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 ABSTRACT OF THE DISSERTATION 
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Eugenia Etkina 

  

 The author led the creation and ongoing implementation of a program 

designed to improve student achievement in mathematics and science at a New 

Jersey vocational/technical high school.  This initiative began 6 ½ years ago, 

coincident with the founding of the school, and should be completed in about 2 ½ 

more years.   

My first aim in conducting this study was to determine the effectiveness of 

the program.  Since this was a long term program created in a real world 

environment it would prove exceedingly difficult to use experimental or quasi-

experimental analysis: there were simply too many potential biases and sources 

of error.  However, I was able to develop a plausible argument for the 

effectiveness of the program by using two measures to create a baseline for 

student aptitude and three measures to determine student achievement.   

Together these analyses showed that the school�s students, while typical 

of those in New Jersey, achieved exceptional results in mathematics and 

science.  The likelihood that the new program was responsible for these results 

was enhanced by the fact that the verbal and mathematical aptitudes of the 
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students were comparable to one another but their achievement, in areas outside 

of mathematics and science, areas that should not have been directly affected by 

the program, were not exceptional. 

Having provided results that were consistent with the conjecture that the 

program was effective, my second aim was to document the program so that it 

could be replicated at other schools.  I provided a number of documents to 

support this goal: the scope and sequence of the mathematics and science 

courses; the curricula for the two physics courses; an explanation of the 

pedagogical approach that is used in the physics courses; and sample chapters 

of a physics textbook that a colleague and I are writing to support the first year 

physics course. 

While these documents supply a snapshot of the current state of the 

program; they are probably insufficient to replicate it; this would also require an 

understanding for of the program�s rationale.  Towards this end, I have explained 

the theoretical framework for the program in depth.   

Schools throughout the United States have been charged with increasing 

student achievement in mathematics and science.  This study documents a 

program that may well be achieving these goals; it could provide an answer for 

them.  
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CHAPTER 1: INTRODUCTION 

Statement of the Problem 

Student achievement in mathematics and science is a high educational 

priority worldwide.  In the United States, the government has made improved 

student achievement in these subjects a national objective.  This has recently 

been evidenced by the president�s comments in the State of the Union address 

and the proposed language of the 2007 Reauthorization Bill for the No Child Left 

Behind legislation. 

The American educational system is not meeting its objectives for these 

subjects; our students are performing below international standards.  The 

problem is endemic, leading to the conclusion that it is structural in nature.  As 

such, its solution will require addressing the very structure of our system of 

science and mathematics education. 

For the last 6 ½ years I have led an initiative to institute a new science 

program in a vocational/technical school in New Jersey.  I am employed by the 

school in several roles: physics teacher; Pre-Engineering Program Manager; and 

the lead teacher for science.  The goal of this program is to improve student 

achievement in both science and mathematics and evidence that improvement 

through student performance on Advanced Placement (AP) examinations.  Full 

implementation of this new program will be complete in about 2 ½ years; about 

nine years after it began.  

In this new scope and sequence; we teach physics in ninth grade instead 

of biology; we teach biology in eleventh grade instead of physics; and chemistry 
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has remained the tenth grade science.  These changes required significant 

curriculum revisions within the courses: course sequence strongly affects course 

content.  One of the subjects whose curriculum underwent significant change is 

physics.  Also, while these changes are in the sciences; one of the key goals of 

this approach was to improve student learning in mathematics. 

My overall objective in conducting this study was to determine the 

likelihood that this new program has been effective in improving student 

achievement in mathematics and science and to document the program so that it 

could be implemented in other schools.  This documentation was crucial; if the 

program is well documented then it would not take other schools nine years to 

implement; learning from our experience could cut that time considerably.  

This dissertation consists of five chapters, the first being this introduction.  

The second chapter begins with a review of the literature related to prior 

experiments with reordered science sequences and then proceeds to the 

theoretical framework for the current effort.  In 1995, Leon Lederman brought a 

great deal of attention to the concept of what was to become known as Physics 

First.  However, experiments with this idea stretch back to the 1960�s and rich 

studies of those efforts were available in the 1970�s and 1980�s.  That work laid 

the foundation for the current Physics First movement so it is explored along with 

the more recent studies. 

The second chapter goes on to review the literature that establishes the 

theoretical framework for the program under study.  Since this program involves 

the real world implementation of a scope and sequence and pedagogy for many 
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interrelated courses taught over a number of years; its theoretical framework 

involves a large number of interwoven ideas.  As a result, the review of the 

literature that supports the program and this study is necessarily broad.  

Literature related to perception; cognition; mediational tools; constructivism; 

mathematics; physics; problem-solving; and transfer are both described and 

related to one another in order to use their connections to establish the 

theoretical framework.   

The methodology of the study is discussed in the third chapter.  This study 

involved documenting and analyzing the results from a program that has been 

operating in a school for more than six years and has involved hundreds of 

students; dozens of teachers; and numerous administrators.  It clearly cannot be 

thought of a either experimental or quasi-experimental in nature: there are 

numerous biases and sources of error that could be minimized, but not removed, 

in a school environment over such an extended length of time.  Some of these 

include: selection bias; lack of randomization; lack of a control group; changing 

experimental conditions; variances in teacher ability; etc.   

However, while that made it difficult to statistically analyze the results of 

the program; it did not lessen the importance of analyzing those results.  The 

third chapter describes a methodology that allows us to draw some reasonable 

conclusions from the school�s experience.  It does so by first using SAT results to 

establish two findings for the students in the school: their aptitude in mathematics 

and in English are not a typical of students statewide and their aptitudes in 

mathematics and in English are similar to one another.   
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Since the program under study was not expected to have had a 

meaningful impact on English or social studies performance, and the students in 

the school are close to the average for New Jersey students in terms of both their 

mathematics and verbal aptitudes, this allowed me to establish two separate but 

related baselines for comparison: state achievement in mathematics and science 

and school achievement in English and social studies. Achievement was 

determined from results on AP exams and High School Proficiency Assessments 

(HSPA�s), the required New Jersey 11th grade test.  

AP exams represent one of the few measures of student achievement that 

is accepted by a majority of high schools, colleges and universities.  They are 

also the closest the United States has to a national high school curriculum and 

assessment.  As a result, they are a valuable tool for comparing student 

performance between schools and between departments within schools.  

Increasingly, the participation of students on those exams is also an explicit 

national educational priority because they represent a program of rigorous study. 

The HSPA is given to all students in New Jersey in 11th grade.   It provides 

a comparative measure of performance between schools and between the 

English and math programs within a school.  Since it is given in both math and 

English; the achievement in both those subjects can be compared to state norms 

and analyzed. 

In addition to the above comparisons, I used participation rates in science 

electives as a measure of the value student�s place on the study of science: an 

effective science program should result in an increase in its apparent value to 
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students.  To the extent that students choose to take courses that are above and 

beyond what is required of them; that reflects either their interest in the material 

or their belief that it is important.  While participation rates alone cannot 

determine which of these two factors is motivating students; it does measure 

their combined effect; an effect which can be thought of as the value students 

place on the study of science. 

The fourth chapter provides the results of that analysis from a number of 

perspectives.  The data show that the students in this school performed well 

above the state average in the areas of science and mathematics.  It is also clear 

that similar gains were not experienced in the areas of English or social studies.  

This supports the idea that the program under study had a positive effect on 

student achievement in mathematics and science; if the effect was due to some 

more general feature of the school or to selection bias, there should have been 

similar gains in all subjects.  While it is not possible to use the results to prove a 

causal connection between the program and the gains in student achievement in 

mathematics and science; a plausible argument is presented.  The various data 

are both consistent with that conclusion and consistent with each other.  

However, alternative explanations are possible for each of the results and those 

explanations are also provided.  While the results are consistent with the 

program being effective, each piece of evidence that supports that conclusion 

could also be explained by some other cause. 

The fourth chapter also provides the documentation of the program.  The 

documentation describes and analyzes the science scope and sequence and the 
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articulations created between science courses and between science and math 

courses; the curriculum and pedagogy of the keystone 9th grade algebra-based 

physics course and the subsequent 10th grade AP Physics course; and the 

textbook that is being written to support the 9th grade physics course and 

captures the manner in which it is taught.  Great attention has been given the 9th 

grade physics course as it is critical to the program: it supports the science 

sequence and is a principal driver of the anticipated improvement in mathematics 

achievement.  It is also the first new course that any school implementing this 

program would need to launch and the course whose curriculum and pedagogy 

are least conventional. 

The final chapter discusses the implications of the results in terms of 

educational policy and in terms of future studies.  It is suggested that other 

schools begin implementing similar programs given the plausible argument that 

this will result in gains in student in achievement in both mathematics and 

science: gains in both of these areas represent national priorities.  The case is 

sufficiently strong that there is every reason to proceed immediately. 

At the same time, further research is recommended both with respect to 

the program at the current school, as well as at schools that might adopt the 

program in the future.  Much of that research would focus on the alternative 

explanations that were given in Chapter 4 for each piece of evidence that 

supports the hypothesis that the program is effective.  The suggested qualitative 

and quantitative studies would serve to either support or fail to support the 

hypothesis that this program is effective.  Alternatively, that research would serve 
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to support or fail to support the hypothesis provided by the alternative 

explanation.   

Research Questions 

Research Questions Data Sources Method of Data Analysis

1)  What is the new science 
scope and sequence and 
how is it unique?

Scope and Sequence Documentation and 
commentary

2) What are the new 
physics curricula and how 
are they unique?

Curricula for Physics 
Honors and AP Physics B 

Courses

Documentation and 
commentary

3) What  is algebra-based 
9th grade physics and how 
is it taught ?

Sample chapter from new 
textbooks and from two 

standard textbooks 

Documentation and 
commentary

School data on the school's 
AP results

AP participation rates,  
average scores and AP 

Metric results

Public data on New 
Jersey's AP results

Evaluation of trends by 
subject area for the school 

and state

School data on the school's 
HSPA results

The AP Metric that was 
described above

Public data on New 
Jersey's HSPA results

Evaluation of the trends in 
the AP Metric by subject 

area 

6) What are the trends in 
the participation rate in 
science electives?

School data on course and 
school enrollment.

Documentation and 
commentary

4) How does the AP 
perfomance of the students 
in this program compare to 
that of students in other 
New Jersey schools?

5) How does the HSPA 
math perfomance of the 
students in this program 
compare to that of students 
in other New Jersey 
schools and to their English 
HSPA performance?

 

Table 1: Research Questions 
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CHAPTER 2: LITERATURE REVIEW 

The Importance of Physics and Mathematics 

The U.S. is joining other nations in making math and science educational 

priorities, side by side with language arts.  �Mathematics plays a prominent part 

in the curriculum of every country, usually second in importance only to the 

mother tongue� (1992, p. 79).  In the United States, the first high school 

assessment requirements, established by the federal �No Child Left Behind Act,� 

are in language arts and mathematics.  Each state is required to assess progress 

in these subjects by 2004/2005. The next requirement is to assess science by 

the 2007/2008 academic year.  

A reform of the science curriculum is underway in many school districts 

nationwide. Rather than the traditional order of biology�chemistry�physics, these 

districts are teaching physics in the first year and biology in the third year.  �The 

rationale for this change is the change the three sciences have undergone over 

the last hundred years.  Biology and chemistry are no longer the purely 

descriptive sciences they once were� (Pasero, 2003, p. 7).  As this change 

gathers momentum, it is being instituted in high schools nationally.  A detailed 

history of this movement is given later in this literature review.  

The original thrust of this approach was to improve the teaching and 

learning of science.  The relative mathematical sophistication required for ninth-

graders to succeed in a physics course, as compared to a biology course, was 

considered a negative feature of this change, not an opportunity.  However, 

some educators believe a major benefit of this new science sequence will be 
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seen in mathematics achievement.  �Seen from this approach, Lederman�s 

�Physics First� reform thrust could be an important opening battle in a full scale 

war on science/math illiteracy as envisaged by �Project 2061� of the American 

Association for the Advance of Science (AAAS 2002)� (Hake, 2002, p. 2).   

Whether this becomes the case may be determined by the manner in 

which ninth-grade physics is taught.  At the outset, many conceived of freshman 

physics as requiring a �conceptual� approach.  This was to address the concern 

that few students understand trigonometry by the ninth grade and traditional first 

year physics classes require trigonometry.  The lack of trigonometry knowledge 

was to be addressed by minimizing the mathematics in the physics class. 

An alternative approach is to teach physics using a mathematically 

rigorous curriculum confined to algebra.  Since most students study algebra by 

ninth grade, teaching physics built on algebra concepts presents an opportunity 

to improve understanding in both subjects.  

The importance of the mathematics mastered in such a parallel set of 

courses should not be underestimated.  Algebra represents the foundation of 

much of the mathematics that follows.  Students who understand the meaning of, 

and how to use, algebraic expressions as tools are well on their way to becoming 

successful in mathematics.  Kieran described this as the important transition from 

procedural to structural mathematics:  �Procedural refers to arithmetic operations 

carried out on numbers to yield numbers�. Structural, on the other hand, refers 

to a different set of operations that are carried out, not on numbers, but on 

algebraic expressions� (Kieran, 1992, p. 392).   Hiebert and Lefevre described 



 10

this as the building of conceptual knowledge that weaves together strands of 

procedural knowledge: �We propose that procedures that are learned with 

meaning are procedures that are linked to conceptual knowledge� (Hiebert & 

Lefevre, 1986, p. 8). 

Science and mathematics education are compelling national priorities: 

their importance lie at the foundation of this study.  An educational program that 

advances achievement in both these areas would be of great interest to the 

educational community.  The program analyzed in this study attempts to 

accomplish that goal, in part, by reversing the sequence in which the sciences 

are taught.  This is not a new idea, but it is an idea whose benefits with respect to 

science are now being embraced and whose apparent challenges with respect to 

mathematics are now being seen as potential benefits to mathematics as well. 

The Evolution of Physics First 

The idea of reversing the science sequence from biology-chemistry-

physics to physics-chemistry-biology has been with us for some time.  While it 

became a prominent topic in the 1990�s there were numerous articles written and 

experiments conducted starting in the 1970�s.  Despite that, there have been very 

few quantitative studies done for a number of reasons: the experimental use of 

the new curricula has mostly been done at a school level and schools� limited 

resources have been devoted to implementation not study; the idea of an 

experimental or even a quasi-experimental approach with randomly selected 

participants would have been difficult to justify to students and parents; the 

curricula evolved over time making it difficult to make clear comparisons.  
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Despite that, there have been a number of articles and documented cases that 

are well worth reviewing. 

Hamilton (1970) reported on a summer program that was run at Western 

Illinois State University that involved teaching students that were going on to 10th 

grade the following year.  Eighteen high school physics teachers were involved 

and a key result was that �the sophomore student had little difficulty in mastering 

the concepts presented� (Hamilton, 1970, p. 458).  The only problem that was 

reported involved the students� lack of knowledge with regard to trigonometry.  

�As one teacher put it, �My students knew the physics of the problem in a few 

minutes, and then I proceeded to waste an hour trying to get him to express his 

knowledge in my language, that of sines, cosines and tangents�� (Hamilton, 1970, 

p. 458).   

The topics covered included measurement, force, motion, heat, 

magnetism, electricity and atomic physics.  No reasons were given why these 

topics could not have been addressed without the use of trigonometry, which was 

beyond the ability of some number of the students.  At the end of the summer, 

only 25% of the teachers answered in the affirmative to the question, �Should all 

high school students take physics?�  Hamilton did not offer an explanation why 

the response to this question was so negative; indicating instead that that would 

require further investigation. 

Palombi (1971) reported on an experiment conducted, beginning in 1965, 

at the Rome Free Academy.  It involved teaching physics to some of their 10th 

grade students; followed by chemistry and then biology.  After the 10th grade 
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physics course, the students were mixed with the general population, in other 

grades, for their subsequent chemistry and biology courses.  The results 

achieved by these students were then compared in all three of their science 

courses. 

Both in terms of their Regents results, this being a New York school, and 

their anecdotal comments, this sequence produced very positive results.  

Students uniformly recommended that the school adopt this new sequence and, 

as a group, they performed better than the average of the school.  This showed, 

�Biology needs chemistry and physics, but chemistry and physics do not 

necessarily need biology� (Palombi, 1971, p. 40). 

Sousanis (1971) reported on the effect of moving physics to tenth grade in 

a private girls� school, Kingswood, in which he was a physics teacher and the 

department head. The author did not indicate the science that the students took 

in 9th grade but did indicate that upon completing 9th grade science, the new 

sequence became physics in 10th grade; chemistry in 11th grade; and 

biochemistry in 12th grade.  Students were only required to take one science after 

9th grade, but the author reported that participation rates in all the sciences 

became quite robust; 85% taking physics; 70% taking chemistry; and 45% taking 

the fourth year course, biochemistry.  In the five years following the change, 

which was instituted in 1965, science had moved from being perceived as the 

weakest to one of the strongest departments in the school.   

Sousanis felt that was especially gratifying �given the impediments our 

culture attaches to a girl�s interest in science� (1971, p. 92).  He noted that some 
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more advanced students were beginning to take physics in 9th grade and one girl 

studied advanced physics, using Beyser�s Modern Physics, and went on to major 

in physics in college.  A number of the girls went on to major in various sciences 

in college.  

Haber-Schaim (1984) made two strong arguments for a physics-

chemistry-biology sequence.  The first argument involved detailing the 

prerequisite knowledge for each course based on an analysis of textbooks.  He 

considered a topic to be prerequisite to the textbook if it was relied upon in the 

book, but not developed within it.  His analysis clearly showed that understanding 

a chemistry text required significant prerequisite knowledge of physics.  Similarly, 

he showed that understanding biology relied upon a number of prerequisite 

topics from chemistry.  There was little indication of required prerequisite 

knowledge in the opposite direction; chemistry for physics or biology for 

chemistry.   

Haber-Schaim�s second argument involved the question of the level of 

mathematics needed to study physics versus chemistry.  He showed that in most 

cases, the level of mathematics required is the same; with the exception of 

trigonometry, which is used in physics but not chemistry.  But he pointed out that 

�the use of trigonometric functions is convenient but by not means essential to an 

elementary treatment of these [physics] subjects� (Haber-Schaim, 1984, p. 332).  

He argued that the amount of mathematics needed for a first year physics course 

is provided by Algebra I.  The combination of his two arguments led Haber-
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Schaim to the conclusion that the proper sequence for science is physics�

chemistry�biology.  

Myers (1987) laid out the history of the current science sequence in detail 

and explained how we arrived at the current sequence of biology-chemistry-

physics. 

The selection [of sequence] was, at that time [1892], clear cut: 1) Biology 

in the 10th grade because it relied mostly on memorization and required 

almost no mathematics.  2)  Chemistry in the 11th grade because it relied 

heavily on memory and meticulous experimental procedures and required 

modest amounts of mathematics.  3) Physics in the 12th grade because it 

demanded higher mathematical dexterity and relied heavily on analysis, 

problem solving and critical thinking.  (Myers, 1987, p. 79)  

 However, science had changed a lot since 1892.  Myers used the analysis 

of Haber-Schaim, described above, to begin making his case for the physics-

chemistry-biology sequence; calling the first advantage �Logical Flow�.  He then 

built upon that with a second advantage: �Mathematical Reinforcement�.  �In 

most high schools algebra I is taught to the majority of students during their 9th 

grade year�.Unfortunately they are not called upon outside of mathematics 

class to use many of these skills until their senior year� (Myers, 1987, p. 79).  He 

pointed out that a physics course taught at, or soon after Algebra I would 

�reinforce students� mathematical skills through regular use� and �demonstrate 

some practical applications and uses of algebra� (Myers, 1987, p. 79). 
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 Myers titled the third advantage for the new sequence: Population 

Awareness.  He defined this as the growing need of the population to understand 

technology due to the rapid �physics and technological advances that have 

pervaded our lives � from television to space travel to personal computers to 

nuclear power plants� (Myers, 1987, p. 80).  The new sequence would lead to all 

Americans having some basic understanding of physics; something that was not 

the case when physics was being taken as the third, and for the most part 

optional, science. 

 Myers also described the results of implementing this new sequence at 

Choate Rosemary Hall, in Connecticut.  He found that participation and interest 

in science rose rapidly with the new sequence.  Also, students were increasingly 

choosing to take physics first (it was optional to do so); with the result that total 

physics enrollments steadily increased from 166 to 238, out of a class size of 

about 250 students, in six years. Enrollment in all the sciences increased and 

students taking the physics course first performed well above the national 

average on the NSTA/AAPT national physics test. 

Hickman reported great success with students studying physics in 9th 

grade as compared to students taking the same course in 11th grade (1990).  

This course was taught in New York, so each student took the Physics Regents 

exam at its conclusion.  He noted that these 9th graders, the first to take physics 

in 9th grade in his school, outperformed the 11th graders on that examination.  He 

attributed this to the fact that �the algebra that they need most is still fresh in their 

minds� (Hickman, 1990, p. 47).  He also noted that �math teachers find increased 
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interest since the students are using the math concepts everyday� [emphasis 

added].  This idea of usefulness as a motivating factor to student achievement 

will prove central to this study.  

Lederman (1995) focused on the problem that too few a number of 

Americans, about 25%, attempted a high school physics course.  He saw this as 

a serious problem in that �physics loses a precious number of potentially gifted 

recruits; the rest of science lose the advantage of students with a  solid 

background in physics; and society loses citizens who have grounding in the kind 

of critical thinking skills that a good physics course can generate� (Lederman, 

1995, p. 11).  He agreed with the previous authors regarding the new sequence 

being more logical but did not seem as comfortable with the idea that most 

physics problems can be solved with only the use of algebra; a type of 

mathematics available to most 9th graders; or he felt that algebra and physics 

cannot be learned in parallel.  As a result, he introduced the idea of teaching a 

�conceptual physics� in 9th grade. 

Lederman described a number of textbooks that used this sort of 

conceptual approach at the same time as he recognized that teaching physics 

this way �isn�t easy.  In conveying real understanding, the teacher can�t hide 

behind problem solving� (Lederman, 1995, p. 13).  Thus, he attempted to turn the 

perception that 9th grade students cannot do algebra into a benefit.  However, it 

is unclear how he came to either of these conclusions.  He did not seem to have 

been aware of the successful work cited above where it was shown how 9th 
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grade students can successfully learn an algebra-based physics to the benefit of 

their science and their mathematics achievement. 

Lederman also discussed the idea of convening �a small workshop of 

teachers and scientists to produce an outline of a three-year curriculum in which 

the first year, science I, is largely physics, the second year, science II, is largely 

chemistry, and the third year, science III, is largely biology� (1995, p. 13).  He did 

recognize that both of these approaches, creating a new sequence based on 

�conceptual physics� or this new set of three science courses, would involve the 

massive retraining of teachers.  However, this seemed a reasonable price to him, 

since he saw the need to introduce the sciences in the new order and was not 

comfortable with solving physics problems based on the algebra that could be 

expected of 9th grade students. 

In a later article, Lederman (1996) built on his previous article in stressing 

the importance of scientific literacy and the need to revamp high school science 

education.  Once again, he opted for beginning with a �ninth grade course that 

would focus largely on physics, taught conceptually using familiar language and 

deemphasizing mathematics so students can focus on the central concepts of 

motion, energy, heat, electricity, light and the nature of the atom� (Lederman, 

1996, p. 62).  He recognized that in implementing his approach, �the physics 

teacher will need to know more about biology and chemistry, and curriculum 

planners will require a greater degree of collegiality among all science teachers� 

(Lederman, 1996, p. 63).  The likelihood of those two outcomes occurring is not 

discussed.  Nor is the price of separating physics from mathematics; a heavy 
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price considering that that combination is what launched modern science, and 

some would say, the modern world. 

Bardeen & Lederman (1998)extended Lederman�s initial idea by  

introducing the idea that mathematics can be integrated into the 9th grade 

physics course to advantage.  �Science I has a focus on physics, taught 

conceptually but with enough mathematics to use the algebra learned in eighth 

and ninth grades.  The use of algebra in practical problems not only advances 

mastery but should spark a realization that �Hey, this stuff is useful�� (Bardeen & 

Lederman, 1998, p. 178)!  This now sounded more like the algebra-based 

physics courses that were experimented with successfully in the 1970�s and 

1980�s and less like the �conceptual� course first discussed by Lederman.  While 

the word �conceptual� was retained, it no longer meant �non-mathematical� or 

implied that �problem solving� was to be avoided.  In fact, all physics courses that 

use mathematics are also conceptual, so the term seems vestigial in this context. 

In this article, Bardeen & Lederman (1998) cited the textbook study, 

described above, by Haber-Schaim to support the science sequence.  They 

added the idea of embedding overarching ideas about science, its nature and 

purpose, into the three core courses, Sciences I, II and III. 

One example of a successful implementation of the new science 

sequence was reported to have taken place in North Hunterdon High School in 

Annandale, NJ (Lewin, 1999), where in 1990-91, only 38 students took an AP 

science course.  �The new curriculum brought steady increases in these 

numbers, and this year [1998-98], a record 226 students are in Advanced 
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Placement science: 98 in biology, 49 in physics, 41 in environmental science and 

38 in chemistry� (Lewin, 1999).  The school attributed the gains to the more 

logical flow of the science sequence. 

Robert Tinker (2000) accepted that the new sequence is more logical but 

was uncomfortable with the change because he felt that traditional physics 

involved only mechanics.  For chemistry and biology to benefit from physics 

being taught first, he felt that a new physics curriculum would be necessary.  His 

idea involved the teaching of quantum physics as the key to first year physics.  

He is alone in that opinion and did not seem to recognize that concepts like force, 

energy, electricity and the basic model of the atom would all represent major 

benefits to chemistry.  It is not clear how the basis of quantum physics could be 

established without any prior foundation in physics.  Or even, how much would 

be lost if all that students learned about physics was quantum physics. 

By 2001, Lederman had made the transition to recognizing that 

mathematics must be an integral part of this new approach to science.  He 

pointed out that �mathematics must be brought into the curriculum revolution 

early because math phobia is a near fatal disease unless the student is 

inoculated at a young age� (Lederman, 2001, p. 11).  The importance of wedding 

mathematics and physics was also indicated by his statements regarding 

coordinating their curricula.  �The math and science teachers must work together 

in collegial professional development so that the connections of the disciplines 

are emphasized and the coherent elements emerge.  Imagine if the math and 
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physics teacher can design a strategy of the weeks so that Monday�s math is 

used in Tuesday�s physics� (Lederman, 2001, p. 12)!   

This also led Lederman to conclude that the conceptually based physics 

books were inadequate to the task: teaching physics in a way that prepares 

students for chemistry and biology.  �They [9th grade physics teachers] use books 

like Paul Hewitt�s Conceptual Physics or Arthur Eisenkraft�s Active Physics which 

are great books but not designed as a prerequisite for chemistry or biology.  So 

the teachers add, embellish, and improvise� (Lederman, 2001, p. 12).  He also 

indicated that more than 100 schools had switched to the new sequence with 

consistently positive results; there were no reports of schools switching back.   

In 2001, Project ARISE (American Renaissance in Science Education) 

issued a report on the status of the Physics First movement in the United States 

(Pasero, 2003).  �Project ARISE was born from a workshop held in September, 

1995�.with the goal to develop a three-year curriculum for high school science� 

(Pasero, 2003, p. 7).  The organization was very much a result of Lederman�s 

impetus and he continues as its leading spokesman. 

It was reported that 58 schools responded to survey questions regarding 

their Physics First programs.  Thirteen schools were chosen at random for more 

in depth interviews.  Some common themes emerged.  First, mathematics was a 

common area of concern.  While most teachers had wanted to minimize the 

mathematics in the first year physics course, they found that very difficult.  The 

solutions that emerged all involved integrating algebra into the physics course 

either by having students take algebra in 8th grade or in parallel with the 9th grade 
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physics course.  The solution of teaching algebra to some students in 8th grade 

and only having those students take physics in 9th grade was undertaken by 

some schools but was problematic in that parents complained if their child could 

not take the 9th grade physics course; tracking became a negative consequence. 

In general, teachers in the schools were very satisfied; with both biology 

and chemistry teachers indicating that they were able to make use of prior 

learning to advance their courses.  Students� attitudes were also very positive.  

There was a need to find teachers who were comfortable teaching 9th graders 

and knew physics; but this did not seem an overwhelming problem.  And, of 

course, there were reported problems related to the transition period; the need 

for too many physics teachers during those years when biology was not taught at 

all and physics was taught in 9th and 11th grade.  This argues for a phased, rather 

than a whole school, transition.  Other problems included the placement of 

transfer students and the lack of a range of textbook options; however, teachers 

reported that they were happy with whatever book that they were using.  The 

need for quantitative research data was pointed out in this report.  

This may be the most significant finding of this study: Physics-first schools 

are not quantitatively documenting the degree of their success.  

Information such as standardized test scores�, enrollment in advanced 

science courses in high school, numbers of students going on to major in 

science in college, or any other relevant date would be invaluable. 

(Pasero, 2003, p. 13)   
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In April, 2002 the American Association of Physics Teachers formally 

announced their endorsement of teaching physics as the first of the three core 

sciences indicating that: �This approach � which we call �Physics First� � has the 

potential to advance more substantially the AAPT�s goal of Physics for All, as 

well as lay the foundation for more advanced high school courses in chemistry, 

biology or physics� (AAPT, 2002). They indicated the need for the following in 

order for this strategy to be effective: Consultation between teachers and 

administrators; development of materials and pedagogy; discussion with parents 

and others; teacher training; and the development of a curriculum for the 9th 

grade physics course.  That curriculum must �provide students an intellectual 

foundation for the study of chemistry and biology later in their high school 

education� (AAPT, 2002); tying back to Lederman�s indication that a purely 

conceptual, non-mathematical, approach for 9th grade physics would not be 

adequate. 

In that same year, Sheppard (2002) pointed out that the history of �physics 

first� actually goes back to the original Committee of Ten.  The section of the 

committee responsible for science had recommended the current order due to 

the need for mathematical sophistication to study physics.  However, the overall 

committee �took a contrary point of view and recommended that physics precede 

chemistry in the curriculum saying that �the order recommended for the study of 

Chemistry and Physics is plainly not the logical one� (NEA, 1893)� (Sheppard, 

2002).  Despite this dissent, the order was left as the science sub-committee had 

recommended and remains the standard order to this day. 
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Sheppard was the first to add the very critical element of time to the 

discussion of science curriculum.  He points out that one year is simply 

insufficient to master any of the three sciences.  He argued that the current 

sequence of science is analogous to teaching students Spanish in 9th grade, 

French in 10th grade and Latin in 11th grade.  There is simply not enough time in 

one year to master any of them:  And to then expect a student to take the 

Advanced Placement examination in Spanish at the end of that sequence, since 

it is considered the easiest of the three, faces the difficulty that it is also been 

several years since they have studied Spanish.  But this is exactly what happens 

to most students in science; they take biology in 9th grade and AP Biology in 12th 

grade.  While Sheppard does not recommend how to accomplish it; he made a 

strong case for spending more than one year studying each of the three 

sciences. 

Results from the Third International Mathematics and Science Study 

(TIMSS) put the situation in perspective (NCES, 1998): In physics, U.S. 

students scored among the lowest of all participating countries�.The 

most important factor determining how well students did in TIMSS was 

whether students had actually covered the material that was being tested.  

All the countries that scored higher than the United States had more 

students taking more physics over longer periods of time. (Sheppard, 

2002) 

While the American Association of Physics Teacher supported Physics 

First, Pascopella pointed out that �the American Institute of Physics doesn�t take 
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a position.  In fact, Michael Neuschatz, AIP�s senior research associate, says 

many teachers oppose the change� (Pascopella, 2003, p. 2).  This was mostly 

attributed to a lack of trained teachers and money. 

Pascopella also pointed out that Rosemary Choate Hall has continued 

with teaching physics as the first in the sequence and that 145 of 150 entering 9th 

graders took physics.  The head of the science department head, Kathleen 

Wallace, reported great satisfaction with the program and indicated that students 

enrolled in Algebra I in 9th grade take Physics while those who had already 

completed Algebra I take Physics Honors. 

Pascopella quoted Lederman as indicating that mathematics was not 

important to teaching physics in 9th grade.  However, she did not give the date 

that Lederman stated that and as was seen above, Lederman�s position has 

moved towards a more mathematical position over time.  She also quoted Jim 

Jarvis, a physics teacher, disputing that opinion; �without the math, the concepts 

just aren�t there� (Pascopella, 2003, p. 4).   

Some 9th graders at �Maryland�s Paint Branch High School�are learning 

math-based physics.  Out of about 400 freshman, 88 take the course and have 

already taken Algebra I� (Pascopella, 2003, p. 4).  The school�s principal 

indicated that it is for �the best and the brightest� freshmen.  The teacher of that 

course, David Zaleski, reported that student achievement was as great as it was 

for students in higher grades and that �you could go a long way in any 

introductory physics course using algebra skills� (Pascopella, 2003, p. 4).  This 

approach also makes it possible for these students to �take AP biology, AP 



 25

chemistry or AP Physics in later grades�.I see kids in the hallway and they say, 

�Mr. Zaleski, we can�t wait to take AP Physics next year� (Pascopella, 2003, p. 6).  

However, no indication was made as to what the other 312 students study in 9th 

grade and how that tracking affects those students� outcomes in science 

achievement.   

Pascopella also reported that the San Diego school district had switched 

all their 9th graders to a physics course; requiring the retraining of 60 teachers to 

boost the number of physics teachers from 30  to 90.  Also, �at the Hockaday 

School, an all-girls private K-12 school in Dallas, freshmen started taking physics 

last fall� (Pascopella, 2003, p. 5).  In Maryland, four counties had switched to 

Physics First (including the county where the Paint Branch High School is 

located) and three others were considering the switch.   

In September, 2003 the Biological Sciences Curriculum Study (BSCS) 

hosted a symposium to discuss the implications of the new science sequence 

with respect to biology.  The proceedings were published in 2004 and include a 

series of presentations.  Lederman stressed four goals for the new 9th grade 

physics course: the nature of science; the power of mathematics; the process of 

physics, storytelling; and conceptual understanding.  With respect to 

mathematics he indicated that: 

Students should be able to appreciate the incisiveness of a mathematical 

statement, its power to predict the future of simple system (e.g. a ball 

rolling on a smooth level surface), and eventually, the value of 
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mathematics in its role of the �language of science.�  Motivations like these 

must improve the learning of mathematics. (Lederman, 2003, p. 13) 

At the BSCS conference Cheryl Mason, a biology teacher and past 

president of the National Association for Research in Science Teaching, 

described the advantages that would be obtained by the biology course if 

students had all studied physics and chemistry.  For example, �having a basis for 

comprehending the complexities of the electromagnetic spectrum, the 

relationship between pressure and volume, energy conversion, and driving forces 

behind chemical reactions all would make for a richer course of study in biology 

at the 11th grade level� (Mason, 2003, p. 54). 

Michael Neuschatz, director of the American Institute of Physics�s (AIP�s) 

Nationwide Surveys of High School Physics Teachers, took a more cautious 

position.  He expressed concerns with both a lack of physics teachers to support 

a reversal in the sequence as well as a generally negative view of the change by 

most physics teachers.  He reported that in a 2001 poll it was found that; �as far 

as physics teachers� attitudes were concerned, we found a broad negative 

reaction to the idea [of reversing the sequence].  Overall, 61 percent of the 

teachers disagreed [with reversing the sequence], 40 percent strongly so�.this 

is among the more one-sided results we have gotten on various opinion 

questions we have posed�� (Neuschatz, 2003, p. 58).  He softened that a bit 

later by pointing out that among those teachers who were engaged in teaching 

9th grade physics �a solid majority preferred the restructured curriculum� 

(Neuschatz, 2003, p. 58).  He seemed uncommitted to the new approach and 
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inclined more towards a physical science course in 9th grade followed by biology 

in 10th grade.  Students with a greater interest in science would then take more 

advanced courses.  Partly, this seemed to reflect the belief that the interest and 

funding would not be available to support more than a two year science 

requirement.  

Greenhalgh, reported on a Physics First program that had failed; at least it 

had failed in the sense that after five years the school decided to revert back to 

the traditional sequence.  However, he was unable to explain why that decision 

was made, saying �it was unclear to me exactly what justification was at the crux 

of my colleagues� votes� (Greenhalgh, 2003, p. 72).  One problem was that there 

was no clear definition as to what would have constituted �success�.  That 

remained subjective and �very little quantitative data was gathered, and less 

remains� (Greenhalgh, 2003, p. 71).  He reported positive anecdotal evidence for 

the new sequence: students recognized and voiced appreciation of the new 

sequence; those in the new sequence �felt pity� for those still in the traditional 

sequence; greater coverage was achieved in chemistry; the 11th grade biology 

classes won the state environmental competition each of the four consecutive 

years they entered; the number of students taking physics increased; 11th 

graders outperformed 9th graders in their biology course. 

Greenhalgh reported that the reasons given for going back to the 

traditional sequence were: 9th grade Honors Physics was not considered 

mathematically rigorous enough to prepare students for college physics; it was 

considered fraudulent to call that course �Honors Physics�; enrollments in the first 
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and second year �regular� physics courses declined.  Greenhalgh did not believe 

that any of these there were either sufficiently true or sufficiently significant to 

give up the advantages of the new sequence.  However, he noted that in the five 

years during which the new sequence was in place that six of the nine teachers 

who had made the decision to switch to it had left the school, including the 9th 

grade physics teacher.  He attributes this �failure� to emotional and personnel 

reasons rather than problems with respect to student learning. 

Legleiter (2003) reported on a successful transition to the new sequence 

in his high school, located in El Dorado, Kansas, which launched a 9th grade 

conceptual physics course.  The author did not report on the mathematics 

content of the course; however, it was taught based on a modeling approach.  He 

reported that his students did well in �Physics Olympics� competitions where they 

faced teams composed of 11th and 12th grade students; some in AP physics 

courses.  They also performed above average on the Kansas State Science 

Assessments; not only in physics, but also in biology. 

Lederman�s position with regard to the importance of mathematics in the 

9th grade physics course has continued to evolve.  In a January, 2005 editorial he 

indicated that a key advantage of having the first high school course be physics 

was its relationship to mathematics: 

Early in physics we meet with definitions that are precise, e.g., position, 

velocity and acceleration.  We learn the power of mathematics (Algebra I) 

to clarify the definitions and to enable us to make predictions: for example, 

x = xo + vt can predict where an object will be at some future time.  
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(Lederman, 2005, p. 6) 

 The idea that the new science sequence would be a benefit to 

mathematics achievement has re-emerged more strongly as the second, more 

recent, phase of the Physics First movement has evolved.  In a May, 2005 

editorial it was noted that one of the four advantages for the new sequence was 

that students will get to �apply their growing mathematical skills to solve real-

world problems� (Ewald, Hickman, Hickman, & Myers, 2005, p. 319).  Of the five 

indicators of the success of the program, in schools that are using it, one was 

�improved mathematics understanding and achievement� (Ewald, Hickman, 

Hickman, & Myers, 2005, p. 319).  In response to the notion that 9th graders 

might not have the mathematics background to study physics, it was pointed out 

that �most eighth-grade students are now enrolled in Algebra I or have completed 

an integrated middle school mathematics program that includes much of the 

algebra that they will need to be successful in physics� (Ewald, Hickman, 

Hickman, & Myers, 2005, p. 320). 

 They also noted that other indicators of the success of this approach were 

that �students study more challenging science courses; improved scores on 

standardized tests including AP, SAT II, and state exams; enrollments that are 

move balanced by gender and race; and increased interest for careers in 

science, technology, and engineering� (Ewald, Hickman, Hickman, & Myers, 

2005, p. 319). 

 There has been a dearth of quantitative studies on physics first program.  

One unpublished study, evaluated the effect of a 9th grade physics course on 
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mathematics achievement (Glasser, 2005).  The author used an 8th grade 

mathematics placement test to determine that entering 9th graders had 

statistically similar levels of achievement over a six year period.  For the first 

three years of the study, 9th grade students were taught biology; for the following 

three years the 9th grade science course became physics.  All students then took 

the PSAT in 10th grade.  By comparing the PSAT scores in mathematics over 

that six year period the study showed that math achievement had improved.  The 

significance of the study was less than .005 for the last two years of data and 

showed an improvement from 67.3 to 75.4, when comparing the first three years 

to the last two years (the transition year showed a similar but smaller effect).  

This represents an eight percent improvement that could plausibly be connected 

to the switch in science sequence.  Of course, that cannot be proven since this 

does not qualify as an experimental setting.  However, it is consistent with the 

hypothesis that 9th grade physics was beneficial to mathematics achievement. 

 I wrote an unpublished paper (Goodman, 2005) based on a series of 

individual and group interviews of students in my school.  As I describe in greater 

detail below, that school had implemented a physics-chemistry-biology 

curriculum based on a mathematically intensive 9th grade physics course.  That 

course�s goal was not only to serve as a foundation for the succeeding science 

courses, but also to improve student achievement in mathematics.  This was to 

be accomplished through the intensive use of algebra; a subject that all the 

students had studied, or were concurrently studying; no trigonometry was used 

as many of the students had not yet studied geometry. 
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The student interviews were used to identify if students perceived that the 

physics course had a beneficial effect on their mathematics achievement and, if 

so, why?  It was found that while all the students felt that physics had benefited 

their understanding of mathematics, the reasons given fell into three distinct 

categories:  those with weak prior math achievement felt that physics gave 

meaning to mathematics; those with strong math backgrounds felt that physics 

gave them an opportunity to practice their math skills; those with moderate prior 

math achievement indicated that physics made math seem useful.  The 

correlation between student achievement in mathematics and the benefit they 

identified due to the physics course had a Pearson correlation of 0.765 and a 

significance of less than 0.01.  The terms used by the students; meaning, 

usefulness and practice, will be critical to the theoretical framework for the 

program under study.  

 The question of the order in which the sciences should be taught extends 

at least back to the Committee of Ten in 1892.  Even that committee never 

reached consensus: the overall committee recommended physics-chemistry-

biology and the science subcommittee, which prevailed, chose biology-

chemistry-physics.   The controversy is fundamental in nature: the science 

content leads one to physics-chemistry-biology but the math required for the first 

year course leads to the reverse.  There is a tension between the mathematics 

content and the physics content of any proposed first year physics course.  The 

recent evolution in the curricula of those courses is an attempt to resolve that 
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tension: an attempt that is now, more than 100 years after the initial decision 

regarding the sequence, proving successful.    

Perception and Cognition 

One reason that science and mathematics have become such high 

priorities for countries around the world is that they represent useful descriptions 

of the universe and how it works.  By necessity, any such description is 

constrained by the limits of our perception and cognition.  These limitations are 

unavoidable; they result from the vastness and complexity of the universe. 

  The universe is filled with a plethora of information; too much for any 

species to process and understand.  For example, we are awash in a broad 

spectrum of electromagnetic radiation ranging in wavelength from below 10-12 m 

to above 105 m.  Visible light, while critical to our survival, represents just a tiny 

sliver of that spectrum.  The vast majority of the electromagnetic spectrum is 

invisible to us.  This perceptual limitation does not just apply to our vision, it holds 

for all our senses.   

Even given the limits of our senses, there is too much information to 

consciously process.  Vygotsky (1987b) wrote of the problem of constancies: 

�why white looks white even in shadow, a dinner plate circular even at an angle, 

why people, for example, do not seem to change size as drastically as the size of 

their retinal images in our eye when they walk away from us, etc.� (Bruner, 1987, 

p. 8). 

If you look at a circular tabletop from directly above, it is clearly a circular.  

However, from any other angle it would be seen as one of an infinite set of 
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possible elliptical tables.  If each time we saw that table from a different angle we 

had to consciously figure out its shape, that set of decisions would fully occupy 

our minds.  In fact, we do not need to make a conscious calculation; that 

calculation is done at a pre-conscious level.  This is not a simple trick, as 

someone designing a computer system to interpret the output from a video 

camera would tell you; but it is one of many thousands of pre-processing steps 

that our brains do for us each moment.   

That pre-processing is not consciously accessible to us and, as a result, 

represents both a valuable tool and a constraint on what we can perceive.  �The 

visual world is not a faithful reflection of the images on the retinas of our eyes but 

a world somehow constructed out of such images� (Gregory, 1988, p. 1).  In fact, 

most of our thought processes are inaccessible to us.  �Perhaps the most 

fundamental, and initially startling, result in cognitive science is that most of our 

thought is unconscious � that is, fundamentally inaccessible to our direct, 

conscious introspection� (Lakoff & Nunez, 2000, p. 27).  Or as Hofstadter put it, 

�We can liken real-world thought processes to a tree whose visible part stands 

sturdily above the ground but depends vitally on its invisible roots which extend 

way below ground, giving it stability and nourishment.  In this case the roots 

symbolize complex processes which take place below the conscious level of the 

mind � processes whose effects permeate the way we think but of which we are 

unaware� (1989, p. 569) 

As a result of innate sensory limitations and unconscious cognitive 

processing, children are not blank slates who absorb information about the world 
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directly.  Rather, each child�s brain processes the input from their circumscribed 

senses in such a way that they perceive the world in an organized manner.  Kant 

(1781) pointed out that that organization is accomplished through the creation of 

categories within which our perceptions are automatically sorted.  �Kant�s 

conclusion was that the mind must not be a totally blank slate.  It must come 

accessorized with certain �categories�, like causality, that organize experience for 

us.  And the raw phenomena of the world must themselves be knowable only 

insofar as they conform to this way of being organized� (Menand, 2001, p. 263).  

Or as Vygotsky said, ��all human perception consists of categorized rather than 

isolated perceptions� (1978, p. 33).   

More recently, Pinker pointed out that ��probably all science and 

mathematics is driven by intuitions coming from innate modules like number, 

mechanics, mental maps, even law.  Physical analogies (heat is a fluid, electrons 

are particles), visual metaphors (linear function, rectangular matrix), and social 

and legal terminology (attraction, obeying laws) are used throughout science� 

(Pinker, 2000, p. 444).  Similarly, diSessa and Sherin developed their theory of 

coordination classes from that same foundation: ��seeing is a substantial 

accomplishment of learning and will depend only very partially on basic 

perceptual capabilities� (diSessa & Sherin, 1998, p. 16).   

While the above argument has been developed for humans, the same 

requirement for sensory censorship and pre-processing exists for all species. To 

believe otherwise would presume that the brains of other species are capable of 

handling vastly more sensory input and conscious cognition than are our own.  
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As that does not seem reasonable, it is to be expected that these characteristics 

are not unique to man. 

Koffka sees in structures some primary, primordial, and essentially 

primitive principles of behavioral organization.  [According to him] It would 

be a mistake to think that this principle applies only to higher or intellectual 

forms of activity.  It is also present in the earliest and most elementary 

forms of development.  This debate, says the author, confirms our 

understanding of the primitive nature of structural functions.  If the 

structural functions are really so primitive, they must appear in the 

primitive behavior that I call instinctual.  We see how in refuting the theory 

of trial and error learning Koffka was led to the conclusion that we can 

apply the structural principle equally to the higher intellectual actions of 

human-like apes, as well as to the training of lower mammals in 

Thorndike�s experiments, and finally to the instinctual reactions of spiders 

and bees. (Vygotsky, 1982a, pp. 245-246). (Wertsch, 1985, pp. 21-22) 

The understanding of our perception and cognition has profound 

implications for science education.  The goal of science education cannot be to 

alter the deep cognitive structure of students.  Our goal must be to embrace and 

understand those perceptual structures and use them as a foundation upon 

which to construct an understanding of the world that transcends them.  While, 

over extended lengths of time, students may develop new intuitions about pieces 

of the world that they extensively study; making that the goal of science 

education would require an undue amount of time for the benefit that would 
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result; certainly for students who have not already committed themselves to 

careers in science.  

While human are not able to change their perceptual and cognitive 

structures; they have been able to develop mediational tools that stand between 

themselves and the world in order to interact with the world more effectively.  We 

are uniquely capable of being able to improve those tools and pass them along to 

succeeding generations.  Through this process we humans have achieved a 

pace of sociocultural evolution that has vastly exceeded the pace of our 

biological evolution.   

Tools of Mediation and their Evolution 

Humanity�s explosive sociocultural development over the last thousands of 

years was not due to the ongoing biological evolution of the human brain; the 

speed of our advance has been too rapid for biological evolution to have kept 

pace.  More importantly, our sociocultural differences from people a few 

thousand years ago are large while our biological differences are not.  When we 

read authors from 2000 to 3000 years ago, we hear voices that are very much 

like ours.  Their perceptions and the manner with which they express themselves 

are very familiar, as familiar in many ways, as reading contemporary authors 

from different cultures.  We certainly do not get the impression that we are 

hearing from a different biological species.  However, the lives of those ancient 

authors were vastly different from ours, as was their understanding of the world.  

The lives and understandings of humans have evolved dramatically while they 

have not evolved very much, if at all, biologically. 
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There is no reason to believe that the human brain of one or even two 

thousand years ago was dissimilar to ours; yet there is an enormous 

disparity between modern culture and that of previous millennia.  This 

pace of change is much too rapid to be picked up at the level of the genes, 

so if evolutionary theory is to be applied to such changes, then it will be 

more appropriate to bring it to bear on behaviour and the mind rather than 

on neural architecture and its genetic code� (Distin, 2005, p. 15) 

The evolution of mediational tools represents the fundamental explanation 

of human�s rapid progress.  Mediational tools represent techniques that allow 

people to externalize their internal thought processes in ways that allow them to 

control their interactions with the environment.  The creation of tools and signs, 

mental tools, represent key forms of mediation.  Rather than interacting directly 

with the environment; tools are developed that stand between the person and the 

environment; the person interacts with the tool and the tool interacts with the 

environment.  Thoughts and designs that begin internally are expressed 

externally through these tools: tools that mediate the interaction between the 

person and the world. 

Mankind�s rapid progress in the past thousands of years has been 

dominated by the evolution of mediational tools.  �The special quality of the 

human environment is that it is suffused with the achievements of prior 

generations in reified (and to this extent materialized) form� (Cole & Wertsch, 

2005, p. 2).  Where millions of years might be required for the evolution of a 

wing, an opposable thumb or a claw, only a relatively brief time was required for 
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the invention and evolution of a hammer, a spear or a shovel.  The term 

�evolution� is appropriate here because of the way tools pass from generation to 

generation with improvements being retained and mistakes being eliminated: 

each improved new tool becomes part of mankind�s heritage.  Useful tools 

spread through a version of natural selection and survival of the fittest.  Better 

tools were reproduced and improved while weaker tools were not.  Successful 

tools become common ancestors to later tools, which branched off to form their 

own clades. 

The same principle of cladistics that has been developed to study 

biological evolution is applicable to tools. One can imagine a primordial garden 

implement in the distant past branching into rakes, shovels and hoes; then each 

of those branching into different specific types such as lawn rakes; soil rakes; 

coal shovels; snow shovels; etc.  Each tool that we see around us today had an 

evolutionary past that reaches back to a set of common ancestors.  While there 

may have been independent inventions of many of these tools, the same is true 

of biological evolution.  Dawkins pointed out that, ��it has been estimated that 

�the eye� has evolved independently more than 40 times in various parts of the 

animal kingdom� (Dawkins, 2004, p. 388).  That does not argue against biological 

evolution anymore than the parallel case argues against the evolution of 

mediating tools. 

The process of biological evolution is based on the interaction of 

phenotype, genotype and the environment.  The process of tool evolution is 

based on the interaction of design, society and the environment.  Without the 
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genotype, each biological innovation would be a dead end: a mutation might lead 

to a beneficial phenotype, but without the ability for it to be passed onto the next 

generation each successful mutation would have to be chanced upon again and 

again.  Evolution would be more like Brownian motion, a drunken man�s walk, 

than progress.   

Similarly, without a society to pass along the improvements it has made in 

its tools; each improvement would have to be recreated every generation: there 

would be no progress.  The fact that each society passes along its own 

innovations, in addition to those of its predecessor societies, is fundamental to 

human culture.  It has created a distinct stream of cultural evolution that moves 

so rapidly that it makes biological evolution look like it is standing still.  �Most of 

what is unusual about man can be summed up in one word: �culture�.  I use the 

word not in its snobbish sense, but as a scientist uses it.  Cultural transmission is 

analogous to genetic transmission in that, although basically conservative, it can 

give rise to a form of evolution� (Dawkins, 1999, p. 189). 

The importance and uniqueness of the evolution of mediational tools is 

fundamental but rarely noted.  We all know that once a device has been created, 

it improves with time, whether it is the bicycle, computer or baby stroller.  Once a 

new tool clade has been formed, rapid evolution occurs as humans refine the 

new tool even while that tool simultaneously branches in multiple directions: 

certain designs become dead ends while others prosper.  This is out of the 

control of any individual: only the interaction of society, the devices and the 

environment can �pick winners�.  Sometimes the winners are not what would be 
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analytically considered the best design.  People still argue about the internal 

versus external combustion engines; Betamax versus VHS video recorders; or 

Apple versus PC computers.  But no individual can choose which design will win; 

that naturally evolves through the interaction of the design, society and the 

environment. 

Tool evolution separates mankind from all other species.  While it is true 

that tool use does occur to an extent in some other species, that is a relatively 

minor feature of those species and does not show the characteristics of rapid 

evolution described above.  �No other tool-using animal on Earth has 

demonstrated the ability to create and retain innovations in their use of tools� 

(Kurzweil, 1999, p. 14). Our ability to evolve tools helps defines our species: it 

has led mankind to dominate this planet: no other species even comes close to 

man in this respect.  

All tools are to some extent mental tools in the sense that they are used 

and passed down by society and they evolve through the interaction of the 

individuals in those societies with their environment.  The use of these tools 

requires the education of novices by more experienced teachers and 

improvements must first be conceived and communicated before they are 

incorporated and applied.   

Through this process it was only natural that truly psychological tools, 

signs, emerged: language; writing; mathematics; science; money; commerce: 

etc.  The emergence and evolution of these mental tools has driven, and 

continues to drive, the cultural evolution of mankind.  �The natural line of 
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development is generally associated with elementary mental functions, and the 

cultural line with higher mental functions.  Furthermore, natural development is 

explained primarily on the basis of biological principles, whereas cultural 

development is attributed to principles that apply to mediational means, including 

the principle of decontextualization� (Wertsch, 1985, p. 42). 

Mental tools represent a clade of their own.  They began as part of the 

process of developing physical tools but were then taken out of that context, 

decontextualized, to become tools in their own right.  As with all tools, each 

mental tool proceeds through its own evolution.  For example, oral language led 

to written language which then evolved to the wide variety of written forms that 

language now takes: stories; novels; novellas; science papers; term papers; 

poetry; journals; notes; blogs; etc.  Human society drives the evolution of these 

mental tools by means of cultural natural selection. 

While people use physical tools to change the external world, mental tools 

change the way that we perceive the world, the way we think and the way we 

communicate.  Acquiring a mental tool transforms the learner and their relation to 

society.  �Vygotsky argued that a sign [a psychological tool] changes nothing in 

the object of a psychological operation.  A sign is a means of psychologically 

influencing behavior � either the behavior of another or one�s own behavior; it is 

a means of internal activity, directed toward the mastery of humans themselves.  

A sign is inwardly directed� (ibid.)� (Wertsch, 1985, p. 78) 

Developing learners by teaching them mental tools is a primary goal of 

education.  Newly acquired mental tools do not replace the biological foundation 
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of a learner�s thinking, but overlays that foundation in a way that allows the tool�s 

acquirer to be more effective. 

Vygotsky did not view the introduction of a new form of mediation as 

resulting in a form of functioning in which factors that had previously 

governed psychological functioning no longer operate.  The point is 

always that the explanatory framework must be reformulated, not 

discarded and replaced, in order to take into account a new factor and its 

interactions with existing factors.  For example, with the introduction of 

psychological signs in social history, the biological constitution of the 

organism that has resulted from evolution continues to play an important 

role, but psychological functioning is now governed by biological 

constitution and sign use. (Wertsch, 1985, p. 23) 

Physical and psychological tools allow us to modify our physical and social 

environment, but by their very use they modify the way we perceive those 

environments: they change us.  It has been said that when you give a child a 

hammer, all the world becomes a nail.  In a very real sense, that is true of all of 

us.  Each new tool modifies our view of the world and our role within it; ��the 

psychological tool alters the entire flow and structure of mental functions.  It does 

this by determining the structure of a new instrumental act, just as a technical 

tool alters the process of a natural adaptation by determining the form of labor 

operations (Vygotsky, 1981a, p. 137)� (Wertsch, 1985, p. 79) 

  The creation of physical tools, and our ability to drive their evolution, 

represented a significant turning point in man�s history; but linked with the advent 
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of mental tools they drove an explosive advance in human culture that remade 

the arc of human history.  Cole and Scribner point out that, �like tool systems, 

sign systems (language, writing, number systems) are created by societies over 

the course of human history and change with the form of society and the level of 

its cultural development.  Vygotsky believed that the internalization of culturally 

produced sign systems brings about behavioral transformations and forms the 

bridge between early and later forms of individual development� (1978, p. 7) 

 The development and evolution of mediational tools is a defining 

characteristic of our species.  While these began as physical tools, their use and 

evolution required the development of psychological tools:  those psychological 

tools were then subject to the same evolutionary forces.  Our cultural heritage 

represents the cumulative total of all the tools that have been developed, 

improved and passed along by prior generations.  They represent a key element 

of human progress.  The medium of biological evolution is DNA: the medium of 

tool evolution is society.  A vital role of society is to improve and pass along tools 

from one generation to the next.  As our tools became increasingly complex 

institutions were developed to expedite their transmission: educational 

institutions.   

The Role of Education 

Education plays a critical role in the development of both mankind and the 

individual.   It teaches children how to apply a wide range of tools and signs that 

have been developed over thousands of years.  If each child had to discover and 

develop these tools on its own, the explosive growth in human competence could 
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not have occurred.  This is true for two reasons.  First, if each generation had to 

discover each tool and sign anew, then mankind would not advance, it would 

simply repeat the steps taken by its ancestors.  Second, many of our tools and 

signs are shared within society and cannot be independently invented.  For 

instance, a language must be shared within a community; it cannot be 

independently invented by individuals and retain its usefulness. 

There are two senses in which Vygotsky considered psychological tools to 

be social.  First, he considered psychological tools such as �language; 

various systems for counting; mnemonic techniques; algebraic symbol 

systems; etc.� to be social in the sense that they are the products of 

sociocultural evolution.  Psychological tools are neither invented by each 

individual nor discovered in the individual�s independent interaction with 

nature.  Furthermore, they are not inherited in the form of instincts or 

unconditional reflexes.  Instead, individuals have access to psychological 

tools by virtue of being part of a sociocultural milieu. The second sense in 

which Vygotsky viewed psychological tools as social concerns more the 

�localized� social phenomena of face-to-face communication and social 

interaction.  Instead of examining forces that operate on a general 

sociocultural level, the focus here was on the dynamics that characterize 

individual communication events.  Of course the two types of phenomena 

are not unrelated.  However, they are governed by different explanatory 

principles and therefore require separate analyses. (Wertsch, 1985, p. 80) 
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The education of a child in the use of sociocultural tools is a key goal of 

education and occurs within a social context, as that is the context within which 

these tools were created.  �By means of words children single out separate 

elements, thereby overcoming the natural structure of the sensory field and 

forming new (artificially introduced and dynamic) structural centers.  The child 

begins to perceive the world not only through his eyes but also through his 

speech.  As a result, the immediacy of �natural� perception is supplanted by a 

complex mediated process; as such, speech becomes an essential part of the 

child�s cognitive development� (Vygotsky, 1978, p. 32). 

The process of internalization of these mediational tools is critical to the 

education of the child.  Through this process the development of the child is 

advanced by his or her education. 

The process of internalization consists of a series of transformations: 

(a) An operation that initially represents an external activity is 

reconstructed and begins to occur internally.  Of particular importance to 

the development of higher mental processes is the transformation of sign-

using activity, the history and characteristics of which are illustrated by the 

development of practical intelligence, voluntary attention, and memory.  

(b) An interpersonal process is transformed into an intrapersonal one.  

Every function in the child�s cultural development appears twice: first on 

the social level, and later, on the individual level; first between people 

(interpsychological), and then inside the child (intrapsychological).  This 

applies equally to voluntary attention, to logical memory, and to the 
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formation of concepts.  All the higher functions originate as actual relations 

between human individuals.  (c) The transformation of an interpersonal 

process into an intrapersonal one is the result of along series of 

developmental events�.  (Vygotsky, 1978, p. 57) 

Vygotsky�s stressed the relationship between everyday and school 

experiences.  Everyday experiences are those that the child has outside of an 

educational setting.  School experiences are mediated by social constructs that 

allow the child to transcend the level of understanding that they would have 

obtained on their own.  The educational experience is the reason that a modern 

child has an understanding of the world that is so significantly different than that 

of a human child 5000 years ago.  �To imagine that socially constructed 

knowledge in areas like science, technology or mathematics is everyday 

knowledge is to misunderstand the purpose of schooling, which is the pupil�s 

initiation into grappling with the theoretical objects of these domains� (Bliss & 

Askew, 1996, p. 60). 

Education starts with the everyday understanding that the child brings to 

school and advances and changes that understanding through the development 

of mediational signs and tools that are not part of the everyday experience.  

�Tharp and Gallimore (1988 a, b) propose that teachers should act to �weave 

together everyday and schooled understanding�.  The skilled teacher brings, or 

weaves, together pupil perspectives and understandings with those that she 

seeks to promote in the classroom.  This process builds upon pupil prior 
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knowledge and understanding with the ideas and concepts the teacher wishes to 

explore with them� (Daniels, 2001, p. 117). 

Education does not occur in a vacuum.  The child�s exposure to the world, 

including their family, friends and society, prior to attending school begins to 

activate the categories that are an innate part of their brains while also beginning 

the development of signs and tools.   The school must meet the child where he or 

she is upon entering and then work with them to teach them the sociocultural 

signs that allow them to build on and transcend what they have already learned.  

A theoretical understanding is built on top of the categorizations, signs and tools 

with which the child enters school. 

That children�s learning begins long before they attend school is the 

starting point of this discussion.  Any learning a child encounters in school 

always has a previous history.  For example, children begin to study 

arithmetic in school, but long beforehand they have had some experience 

with quantity � they had to deal with operations of division, addition, 

subtraction, and determination of size.  Consequently, children have their 

own preschool arithmetic, which only a myopic psychologist could ignore. 

(Vygotsky, 1978, p. 84) 

Education plays a fundamental role in the transmission of mental tools 

from generation to generation.  It is certainly not to be expected that any child will 

discover these tools; it that were possible children would have discovered them 

millennia ago.  The idea that students will �discover� mediational tools 

misunderstands the very nature of tool evolution and the role of education.   
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The cultural heritage of our mediational tools represents our rightful 

inheritance; an inheritance that has been improved and passed along by all who 

came before us.  Creating the conditions by which mediational tools may be 

successfully passed on to the next generation is the role of education:  that is 

why education is central to human society.  However, the process of passing 

those tools along is not as simple as simply explaining them; students must be 

helped to construct them. 

Social Constructivism 

Mediational tools, including the tools of mathematics and science, were 

developed in a social environment and that is the environment in which they are 

most easily and efficiently learned.  The acquisition of these tools advances the 

development of the child by separating them from their everyday understandings: 

a separation that Vygotsky viewed as the key role of science education.   

Vygotsky saw the teacher as playing an important role in the social group 

in which the mediational tool of science is developed: instruction would take 

many forms but would primarily consist of discourse between the students and 

the teacher and between the students themselves. 

�[Vygotsky] wrote about collaboration and direction, and about assisting 

children �through demonstration, leading questions, and by introducing the 

initial elements of the task�s solution� (Vygotsky, 1987, p. 209), but did not 

specify beyond those general prescriptions.  Nevertheless, he considered 

what we would now call the characteristics of classroom discourse (see 

Cazden, 1988) as central to his analysis.  Vygotsky (1981) claimed that 
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the intellectual skills children acquire are directly related to how they 

interact with others in specific problem-solving environments.  He posited 

that children transform the help they receive from others and eventually 

use these same means to direct their subsequent problem-solving 

behaviors (Diaz, Neal, & Amaya-Williams, this volume).  Therefore, the 

nature of social transactions is central to a zone of proximal development 

analysis (Moll, 1989; Tudge, this volume). (Moll, 1990, p. 11) 

While this social constructivist approach welcomes the teacher to the 

social group within the classroom, it rejects the use of direct instruction in a 

lecture form. 

Pedagogical experience demonstrates that direct instruction in concepts is 

impossible.  It is pedagogically fruitless.  The teacher who attempts to use 

this approach achieves nothing but a mindless learning of words, an 

empty verbalism that stimulates or imitates the presence of concepts in 

the child.  Under these conditions, the child learns not the concept but the 

word, and this word is taken over by the child through memory rather than 

thought.  Such knowledge turns out to be inadequate in any meaningful 

application.  This mode of instruction is the basic defect of the purely 

scholastic verbal modes of teaching which have been universally 

condemned.  It substitutes the learning of dead empty verbal schemes for 

the mastery of living knowledge.  (Vygotsky, 1987a, p. 180) 

But Vygotsky did not discourage teachers from directly explaining 

concepts and ideas to their students at the appropriate times.  He felt that an 
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explanation at the blackboard by a teacher might be very effective when assisting 

a student who is struggling to learn a challenging new concept.  However, the 

student must be engaged in problem solving and the instructional help must be at 

the appropriate level. 

Recently psychologists have shown that a person can imitate only that 

which is within her developmental level.  For example, if a child is having 

difficulty with a problem in arithmetic and the teacher solves it on the 

blackboard, the child may grasp the solution in an instant.  But if the 

teacher were to solve a problem in higher mathematics, the child would 

not be able to understand the solution no matter how many times she 

imitated it. (Vygotsky, 1978, p. 88) 

This discourse must be ongoing and between not only the teacher and a 

student but also and between the students themselves; until everyone in the 

class understands the concept.  Davydov explains the challenges that a teacher 

faces and makes it clear why no formulaic perspective towards teaching is 

effective. 

The teacher�s work is particularly complex because, in the first place, the 

teacher must be well oriented to the regularities of the child�s personal 

activity, that is, know the child�s psychology; in the second place, the 

teacher must know the particular social dynamics of the child�s social 

setting; and in the third place, the teacher must know about the 

possibilities of his or her own pedagogical activity to use these sensibly 

and thus raise to a new level the activity, consciousness, and personality 
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of his or her charges.  This is why the work of a genuine teacher can 

never be stereotyped or routine; the teacher�s work always carries a 

profoundly creative character.  (Davydov, 1995, p. 17) 

Daniels points out why one needs to be wary of �authentic problems� as 

they can move the student towards �everyday experience� and away from the 

structured learning that represents the essential value of learning science.  

This question of authenticity seems to raise key problems.  Vygotsky�s 

distinction between the everyday and the scientific would lead to the 

suggestion that if �authentic� problems in �authentic� settings� are to form 

the content of a curriculum then they should be selected very carefully.  

Following Davydov and Kozulin they should be problems which lead to 

theoretical learning�. The cognitive apprentice approach opens the 

question of the relationship between the schooled and the everyday and 

yet seems to close the question by attempting to place the schooled in the 

everyday.  This seems to ignore the suggestion that schooling may be 

capable of helping to transcend the constraints of the everyday. (Daniels, 

2001, p. 116) 

Once mental tools are acquired, they are used to learn higher level mental 

tools: in the process, they become incorporated into the learner; they become 

automatic.  �The development of our species, let alone the individual�s 

development, surely requires that certain actions and procedures be carried out 

nonreflectively and without any appreciation of the meaning or explanation of the 

action� (Murray & Sharp, 1986, p. xi).  Through use and practice the tool 
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becomes part of the learner and allows the learner to move beyond it.  In this 

manner, algebra becomes part of the cognition of the learner as it is applied to 

solving physics problems; chemistry becomes incorporated as it is used to 

understand biology problems; etc. The learner uses and goes beyond the 

algebra or the chemistry and, as a result, the algebra or the chemistry becomes 

part of their basic understanding. 

In the following story, Leont�ev makes an important point that is directly 

relevant to this study.  He describes how in the process of learning to drive a car 

the skill of shifting gears is initially a significant challenge and, to some extent, an 

end in itself: it must be consciously learned.  However, even as that mental tool is 

being acquired, it changes from being an end to a means.  It is needed in the 

actual driving of the car, but as the driver moves on to other challenges, fades 

into the driver�s subconscious.   

Initially every operation, such as shifting gears, is formed as an action 

subordinated specifically to this goal and has its own conscious 

�orientation basis.  Subsequently action is included in another action� for 

example, changing the speed of the car.  Shifting gears becomes one of 

the methods for attaining the goal, the operation that effects the change in 

speed, and shifting gears now ceases to be accomplished as a goal-

oriented process: its goal is not isolated.  For the consciousness of the 

driver, shifting gears in normal circumstances is as if it did not exist.  He 

does something else: he moves the car from a place, climbs steep grades, 

drive the car fast, stops at a given place, etc.  Actually this operation [of 
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shifting gears] may, as is known, be removed entirely from the activity of 

the driver and be carried out automatically.  Generally, the fate of the 

operations sooner or later becomes the function of the machine. (Leont'ev, 

1978, p. 66) 

Applying previously learned information, such as how to shift gears in a 

car, to more complex problems, like how to drive up a hill to get to a specific 

location, is a critical part of learning.  If problems never become more complex, 

what was learned earlier represents becomes a dead-end; its value is never 

reinforced; it is never shown to be useful.  Also, the ability to solve more complex 

problems is never developed; the ability to solve even simple problems weakens 

through disuse.  Solving more complex challenging problems is critical for 

learning. 

This can be seen in the case of the students enrolled in the Rutgers 

Astrophysics Institute (Etkina, Matilsky, & Lawrence, 2003) they were not 

learning to shift gears and drive cars to remote locations; but they were learning 

to use the mediational tools of science and mathematics to solve complex 

problems involving real data; in the process of doing that, they acquired the 

mediational tools of mathematics and science.  The Institute is a summer 

program for advanced science students who conduct genuine research based on 

live data from X-Ray telescopes.  Etkina et al. found that students made 

substantial gains in their understanding of complex physics concepts by using 

those concepts to analyze data and solve problems.   
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The program design involved a number of factors which may have 

contributed to its success.  While much of the focus of their study was on the 

value of using authentic data to develop and test hypotheses: a second key 

factor was the significant amount of group work that was involved over an 

extended period of time. ��Understanding and progress in science is best viewed 

as constructed knowledge within communities of knowers� (Hawkins and Pea, 

1987 p. 292).  RAI strongly emphasized the collegiality of science.  During the 

summer students worked in groups of 4 � 6.  By the end of the summer each 

student had worked with every other student� (Etkina, Matilsky, & Lawrence, 

2003, p. 964). The authors cited two implications from their study.   

• The value of the fact that  �(a) students use experimental evidence 

to construct explanation (models) and then test them by predicting 

the results of new experiments, and (b) students use the same 

approach�to investigate new phenomena using real-time data. 

(Etkina, Matilsky, & Lawrence, 2003, p. 981)  

• They [Students] no longer fear complex problems and do not 

perceive the teacher as an authority.  This result might be because 

students were given plenty of time to work on complex tasks.  

(Etkina, Matilsky, & Lawrence, 2003, p. 981) 

 While these two factors are inseparable in the cited study as both were 

present throughout, my study focuses on the effect of the second factor.  The use 

of real data probably serves as a motivation to students to engage in group 

problem solving that advances their development.  But, the proximate cause for 
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their learning is the group problem solving process itself.  A very important factor 

is the amount of time that was given for the group to work on problems without 

the intervention of an outside authority.  Any such intervention would have cut 

short the development of the students.  Under time constraints group 

collaboration breaks down.    

This same process of learning through problem solving can be seen in a 

mathematical context.  Schoen and Charles point out that the �key to fostering 

students� understanding is engaging them in trying to make sense of problematic 

tasks in which the mathematics to be learned is embedded� (2003, p. xi).  Hiebert 

and Wearne add to this that, �The key to allowing mathematics to be problematic 

for students is for the teacher to refrain from stepping in and doing too much of 

the mathematical work too quickly.  But students must serve their role as well.  

They must see something as problematic that they want to resolve� (2003, p. 7).  

Together these two statements prescribe the same approach for learning 

mathematics as is used in the RAI for learning physics. 

Heller studied the effect of group problem solving in two contexts: a 

freshman university course (Heller, Keith, & Anderson, 1992) and a sophomore 

community college modern physics course (Heller & Hollabaugh, 1992).  In both 

cases, problem solving strategies were taught to students by challenging them 

with complex problems; problems that were designed to be different than typical 

back-of-textbook problems in that they did not explicitly identify the unknown 

variable; provided too much information; left out information that was externally 

available; and required that reasonable assumptions be made.  The studies 
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found that all students gained through the group work, regardless of their initial 

ability; that group solutions were superior to individual solutions, no individual 

could match the performance of the group of which he or she was a part; and it 

was easier for instructors to teach in this structure than in a traditional class.    

Educational tools were developed, improved and can efficiently be passed 

along to the next generation in a social context: they will not be discovered by 

students on their own without the help of a teacher; they are very ineffectively 

transmitted by lecture; and they are reinforced by being actively used to solve 

problems.  Problem solving serves both as a medium in which prior tools are 

used, and thereby shown to be useful, and in which new tools are developed.  

Since usefulness is a driver of both tool construction and evolution, it is a critical 

element in the educational process.  A rich problem solving environment, 

maintained by an actively involved teacher, promotes student learning.   

The Zone of Proximal Development 

Vygotsky strongly felt that education must advance development, not wait 

upon it.  While Piaget felt that education must wait until the child reached a stage 

of development where they were prepared to learn a concept, Vygotsky felt that 

�learning which is oriented towards developmental levels that have already been 

reached is ineffective from the viewpoint of a child�s overall development.  It does 

not aim for a new stage of the developmental process but rather lags behind this 

process.  Thus, the notion of a zone of proximal development enables us to 

propound a new formula, namely that the only �good learning� is that which is in 

advance of development� (Vygotsky, 1978, p. 89). 
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Vygotsky defined the zone of proximal development as ��the distance 

between the actual developmental level as determined by independent problem 

solving and the level of potential development as determined through problem 

solving under adult guidance or in collaboration with more capable peers� 

(Vygotsky, 1978, p. 86).  He saw advancing the development of the child as the 

key goal of education.  

Vygotsky viewed education as a fundamentally social process since the 

mediating tools that are taught in school are fundamentally social to begin with 

and their effect is to advance the development of the child as a member of 

society.  

We propose that an essential feature of learning is that it creates the zone 

of proximal development; that is, learning awakens a variety of internal 

developmental processes that are able to operate only when the child is 

interacting with people in his environment and in cooperation with his 

peers.  Once these processes are internalized, they become part of the 

child�s independent developmental achievement. From this point of view, 

learning is not development; however, properly organized learning results 

in mental development and sets in motion a variety of developmental 

processes that would be impossible apart from learning.  Thus learning is 

a necessary and universal aspect of the process of developing culturally 

organized, specifically human, psychological functions. (Vygotsky, 1978, 

p. 90) 
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The very mediational tools that make us more effective in our interactions 

with the world also change us in fundamental ways; mediation is a two way 

street.  Signs begin in the external social world, become internalized and finally 

modify the way that we think.  As Vygotsky said, �any higher mental function 

necessarily goes through an external stage in its development because it is 

initially a social function.  This is the center of the whole problem of internal and 

external behavior� When we speak of a process, �external means social.� Any 

higher mental function was external because it was social at some point before 

becoming an internal, truly mental function. (1981b, p. 162)� (Wertsch, 1985, p. 

62). 

Bruner (1987) stresses the role that dialogue with a more expert teacher 

plays in the development of understanding on the part of students in their ZPD.  

�Once a concept is explicated in dialogue, the learner is enabled to reflect on the 

dialogue, to use its distinctions and connections to reformulate his own thought� 

(Bruner, 1987, p. 4). 

Thus, education transforms students not by teaching them a set of facts 

but by advancing their development while passing along to them the mediational 

signs and tools that are their inheritance as members of human society.  This is 

efficiently accomplished in a social environment: the type of environment in which 

those tools and signs were developed and evolved.  This instruction �calls to life 

in the child, awakens and puts in motion an entire series of internal processes of 

development.  These processes are at the time possible only in the sphere of 

interaction with those surrounding the child and in collaboration with companions, 
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but in the internal course of development they eventually become the internal 

property of the child. (Vygotsky, 1956, p. 450)� (Wertsch, 1985, p. 71).  

While Vygotsky�s perspective on the importance of the social interaction in 

the development of the child is often contrasted with Piaget�s emphasis on the 

individual, this difference is perhaps exaggerated.  Cole and Wertsch point out 

that Piaget also recognized the importance of social interactions in individual 

development.  ��There are no more such things as societies qua beings than 

there are isolated individuals.  There are only relations�.and the combinations 

formed by them, always incomplete, cannot be taken as permanent substances� 

(Piaget, 1932, p. 360) and �...there is no longer any need to choose between the 

primacy of the social or that of the intellect: collective intellect is the social 

equilibrium resulting from the interplay of the operations that enter into all 

cooperation (Piaget, 1970, p. 114)�� (Cole & Wertsch, 2005, p. 1).  

 An effective educational environment should maintain students in their 

zone of proximal development.  In the context of a physics or mathematics class, 

this zone becomes defined as the difference between the most difficult problems 

that a student could successfully solve alone and the most difficult problems that 

he or she could solve by working with others or with the help of a teacher.   

Maintaining each student in their zone of proximal development for the 

maximum amount of the time that they are in class is a difficult but important 

instructional objective.  This zone is unique for each student, so this requires 

confronting students with a set of rich problems that they can solve together in a 

manner that each of them is challenged and engaged.  It requires supplying just 
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the right amount of information to keep the group moving forward, but no more 

than that.  Too little or too much help work equally towards taking students out of 

their ZPD. 

 One of the reasons that it is possible to maintain everyone in their own 

ZPD while solving problems in common is that the more advanced students carry 

the additional burden of having to help the less advanced students construct their 

understanding; this requires a deeper level of understanding on the part of the 

advanced student than would otherwise be obtained and adds both their 

challenge and their achievement.   

When students are in their ZPD, their learning is rapid and their attitude is 

positive.  They not only enjoy solving the problems, they feel the joy of growing 

and becoming more effective.  Students in this zone can be pictured as riding a 

wave.  If they fall behind it, because the problems are too easy, they get bored 

and do not progress.  If they get ahead of it, the problems are beyond the group�s 

ability; they get overwhelmed, become frustrated and give up.  But if the 

problems keep the students just at the edge of their ability, it is exciting to watch 

how quickly they progress. 

Science: A Clade of Mediational Tools 

Science can be viewed as the clade of mental tools that mediates 

between Man and the universe.  The human endeavor of science represents the 

evolution of the mediational tools that were developed and improved upon by 

generations of individuals in order to understand our world.  On the one hand, 

Man can only conceptualize as a species what a human can conceptualize as an 
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individual: the cognitive abilities of individual humans will always constrain us.  

On the other hand, Man continues for millennia while individuals have just a brief 

lifetime.  Ideas evolve over the course of generations; but they are still 

constrained by the cognitive limitations of the species.   

Pascal had compared the human race to a man who never dies, always 

gaining knowledge, while Leibniz spoke of the Present big with the Future.  

Turgot...[wrote that] �the human race, observed from its first beginning, 

seems in the eyes of the philosopher to be one vast whole, which like 

each individual in it has its own infancy and its own conditions for growth.�  

Kant, in 1784 expressed the germ of the same concept, observing in 

particular that man�s rational dispositions are destined to express 

themselves in the species as a whole, not in the individual.  (Wilson, 1998, 

pp. 21-22) 

From this perspective, a scientific concept must have meaning for the 

person using it and must make predictions or statements about the world that are 

useful to that person.  Without meaning, the person could not apply the concept.  

Without usefulness the tool would have no value.  Tools without meaning or use 

are not selected for ongoing refinement through sociocultural evolution.  That 

process of ongoing refinement is necessary for science to progress. 

  In this case, the term �useful� can be with respect to the world itself or in 

mediating between other theories or explanations about the world.  While science 

began through the need to make predictions about the world around us, it has 

evolved and become decontextualized in the sense that many scientific concepts 
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make predictions that have no direct use except in how they relate to other 

scientific predictions; they are useful in creating a self-consistent scientific view of 

the world.  While a particular scientific concept might not have any direct 

immediate use; the scientific paradigm that it helps support might be very useful.   

For instance, cosmological explanations for the origin of the universe 

cannot be said to make predictions that are directly useful to mankind, but they 

can predict consequences with respect to our current theories about how the 

world works that are useful to developing a useful scientific paradigm.  They 

become an important part of science because of their usefulness within the 

structure of science itself. 

While this approach towards the nature of science will be used in this 

study, it is worth exploring some other approaches because some of these 

alternative definitions of science may be isomorphic with the cladistics 

perspective.   

Empiricism attempted to restrict scientific statements to direct experience.   

As Popper indicated, ��the fundamental thesis of empiricism [is that] experience 

alone can decide on the truth or falsity of scientific statements� (2002, p. 20). 

However, that approach is unrealistic in two key senses.  First, as discussed 

above, our ability to �experience� is severely limited by our senses and by the 

cognitive categories that are pre-programmed into our perceptions.  Without 

depending upon mediational tools to extend our understanding beyond the 

directly observable we would have an entirely constricted and not particularly 

useful view of the world.   Secondly, because of �Hume�s realization of the 
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inadmissibility of inductive arguments� (Popper, 2002, p. 20) it is impossible to 

extend empirical observations to general theories.  This failure of induction is due 

to the fact that what has happened in the past cannot be depended upon to 

determine what will happen in the future.  �Hume has shown, I think conclusively, 

that induction is invalid�� (Popper, 1979, p. 272). 

Logical positivism led to the belief that there is an underlying �scientific 

thought process�, often described as the �scientific method�, involving an iterative 

process comprised of hypotheses, predictions and experiments.   Popper was 

skeptical that any such scientific method exists stating that, �if anyone should 

think of scientific method as a way which leads to success in science, he will be 

disappointed�.Should anybody think of scientific method, or of The Scientific 

Method, as a way of justifying scientific results, he will also be disappointed� 

(1979, p. 265). 

 To the extent that a unique form of scientific reasoning, such as the 

scientific method, exists, that would not conflict with a cladistics view of science.  

That would simply designate that method as either defining the science clade or 

being a branch of it.  In fact, science is much broader than any one method and, 

to the extent that a scientific method exists, the clade representing science would 

include it. 

Kuhn made the case that there are really two types of science, normal 

science, �research based on one or more past scientific achievements� (1970, p. 

10) and revolutionary science, �those non-cumulative developmental episodes in 

which an older paradigm is replaced in whole or in part by an incompatible new 
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one� (1970, p. 92).  His approach is completely consistent with a cladistics view 

of science.  Normal science would represent the current occupants of the science 

clade while defunct scientific theories would represent extinct branches.  This 

view of a science, as being made up of a number of current and extinct 

branches, is consistent with the approach of this study.   

In fact, Kuhn�s approach extends the evolutionary argument by tying it to 

the more modern evolutionary theory of punctuated equilibrium: the idea that 

evolution proceeds unevenly over the course of time.  It has been shown in 

biological evolution that there are long periods of small incremental changes 

punctuated with short periods of very rapid change.  In an analogous manner, 

normal science would be seen as that science which is practiced between 

periods of rapid evolutionary change.  The periods of rapid evolution would be 

designated as revolutionary science. 

This is also consistent with the process that Kuhn describes as occurring 

when normal science has been confronted with an increasing numbers of 

anomalies: �not to renounce the paradigm that has led them into crisis� (Kuhn, 

1970, p. 77);  rather new paradigms are developed that are in conflict with the 

accepted paradigm. �The decision to reject one paradigm is always 

simultaneously the decision to accept another, and the judgment leading to that 

decision involves the comparison of both paradigms with nature and each other� 

(Kuhn, 1970, p. 77).  Thus a new theory must be created and selected for 

survival before the old theory is rejected.  
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Chinn and Brewer describe that �there are seven basic responses [to 

anomalous data]� (1993, p. 4).  Only one of these responses is to reject the 

currently accepted theory.  They constructed a theory of conceptual change that 

followed from their perspective about the nature of science. 

According to Richard Muller (1988), professor of physics at the University 

of California at Berkeley �When presented with a new, startling, and 

strange result, it is easy to come up with reasons to dismiss the finding.  

Even if the skeptic can�t find and outright mistake, he can say, �I�m not 

convinced.�  In fact, most scientists (myself included) have found that if 

you dismiss out of hand all claims of great new discoveries, you will be 

right 95% of the time (pg. 71)�.  By this standard, it appears that compared 

with scientists, science students may be remarkably open to new data! 

(Chinn & Brewer, 1993, p. 6) 

In his chapter titled �A Realist View of Logic, Physics and History� (1979, 

pp. 285-318) Popper explores what he describes as the three main theories of 

truth� the correspondence theory, the coherence theory and the pragmatic 

usefulness theory.  The correspondence theory holds that a theory must 

correspond with the facts; the coherence theory says that a theory must be 

consistent with other accepted theories; and the pragmatic usefulness theory 

says that a theory must be useful.  These are not inconsistent goals since all 

three could be accomplished by a single theory that agrees with the facts, is 

consistent with other theories and is useful.  However, the reason for the three 

theories is the question of limitation.  Can we ever know the truth to the degree 
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required by the correspondence theory?  If not, the other two approaches may be 

as much as we can hope for.   

While Popper goes on to reject all three theories and then embrace a 

modified version of the correspondence theory based on the work of Tarski, I 

found the argument that he cites from Tarski unconvincing.  The cladistics view 

of science would connect with Popper�s theory of truth as pragmatic usefulness.  

Since Popper rejects usefulness as a criterion for truth, it is worth exploring 

Popper�s position and see how my position differs from his. 

Although I am an opponent of pragmatism as a philosophy of science, I 

gladly admit that pragmatism has emphasized something very important: 

the question whether a theory has some application, whether it has, for 

example, predictive power.  Praxis�is invaluable for the theoretician as a 

bridle: it is a spur because it suggests new problems to us, and it is a 

bridle because it may bring us down to earth and to reality if we get lost in 

over-abstract theoretical flights of our imagination.  All this is to be 

admitted.  And yet, it is clear that the pragmatist position will be 

superceded by a realist position if we can meaningfully say that a 

statement, or a theory, may or may not correspond to the facts. (Popper, 

1979, pp. 311-312) 

 My embrace of usefulness is based on my belief in the evolutionary nature 

of science as a clade of mental tools and the vital role of usefulness in driving 

that evolution.  If correspondence to reality were provable, so much the better: 

but due to the fundamental limitations of our perceptions and cognition, we do 
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not have access to ultimate Truth.  ��Seeing things� in the world � gaining 

information about them is a complex cognitive accomplishment�.observation is 

theoretically based, as well as empirical.  The notion of pure and indubitable 

�data� is no longer regarded as a serious possibility in the philosophy of science, 

nor is it commonly used in the avowed warrants of professional science� 

(diSessa & Sherin, 1998, p. 15). 

Further, usefulness in its broadest sense is quite a lot as long as, under 

the term usefulness, one includes that set of theories that make mental tools 

useful with respect to one another.  Thus the entire structure of scientific and 

mathematical thought can be useful, if only in that it makes further work in 

mathematics and science possible.  This is the definition of usefulness that drives 

the natural selection process described above and that has allowed us to 

develop the rich sets of mental tools, known as science and mathematics that 

underlie this study. 

An important implication of this perspective towards science is that what 

we teach our students must be shown to be useful: usefulness drives tool 

development, construction and evolution: useless tools are not selected for 

learning.  Recognizing that science is a set of tools makes it clear that that same 

condition applies to science instruction.  However, usefulness should not be 

confused with the idea of everyday �relevance�.  A tool can be considered useful 

if it allows students to solve problems with which they are confronted in a school 

environment.  As long as problems are rich and interesting, tools that help solve 
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them will seem useful.  This reinforces the importance of problem solving as a 

pedagogical approach. 

Mathematics and Physics as Clades of Mediational Tools 

Both mathematics and science represent high-level mental mediational 

tools.  As is the case with all such tools, they mediate both between man and the 

world as well as between other mediational tools, including each other.  While 

they were initially developed in the context of the world, they gained much 

greater power when they become decontextualized and applied to not only the 

world but to enhancing the power of other tools.  The synergy of combining the 

use of mediational tools to augment each other is a key factor in man�s rapid 

sociocultural evolution.  Both science and mathematics represents dramatic 

examples of that.  In fact, that is a key reason why all governments in the world 

make achievement in mathematics and science education such high priorities. 

Lakoff and Nunez (2000) make the argument, though not all 

mathematicians would agree, that mathematics is a direct consequence of our 

physical bodies and the neural connections within our minds.  No matter how 

abstract a mathematical concept may seem; that concept can be traced back to 

our physical bodies, our sensory perceptions and the cognitive structure of our 

brains.  The abstraction and decontextualization of those concepts is done 

through the use and blending of metaphors that relate back to our most primitive 

understandings.  They refer to this as �embodied mathematics�.    

They argue that �to understand a mathematical symbol is to associate it 

with a concept � something meaningful in human cognition that is ultimately 
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grounded in experience and created via neural mechanisms� (Lakoff & Nunez, 

2000, p. 49).  Furthermore, they state that, �our linear, positional, polynomial-

based notational system is an optimal solution to the constraints placed on us by 

our bodies (our arms and our gaze), our cognitive limitations (visual perception 

and attention, memory, parsing ability), and possibilities given by conceptual 

metaphor� (2000, p. 86). 

This approach towards mathematics radically lowers the barrier between 

physics and mathematics and may explain why they are so inextricably 

intertwined.  It is hard to find a clear difference between mathematics and 

physics if both are rooted in our bodies, senses and minds.  In fact, many of the 

arguments made by Lakoff and Nunez relate to space, time, distance, velocity, 

etc. and are every bit as applicable to physics as they are to mathematics.   

Phenomenological primitives (p-prims) represent the pieces of the 

�knowledge in pieces� theory outlined by diSessa (1993) to explain our intuitive 

understanding of the physical world.  They are the schemata that exist within 

human consciousness that allow us to simplify our perceptions of the world into 

understandable patterns: ��p-prims become the intuitive equivalent of physical 

laws; they may explain other phenomena, but they are not themselves explained 

within the knowledge system�.  They are the �primitive elements of cognitive 

mechanism�.that are activated in appropriate circumstances, and, in turn, they 

should help activate other elements according to the contexts they specify� 

(diSessa, 1993, p. 112).   
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One example of a p-prim is �continuous push�: the intuitive belief that a 

continuous push is required to keep an object moving at constant speed; for 

instance in �continuously pushing a cup across a table� (diSessa, 1993, p. 131).  

This is self-evident in our everyday experiences and reflects our physical 

intuition: if we cease pushing something it comes to a stop.  Newtonian physics 

views this as incorrect: objects that have a constant velocity maintain that 

velocity unless a net force acts upon them.  But we evolved in a world where 

there are always forces present to bring objects to a stop: usually friction.  So this 

p-prim evolved within us, along with a long list of others, and helped us survive: 

they are hard for a student to give up: they are a part of their cognitive structure.  

In fact, these p-prims will be shown below to provide the foundation upon which 

we can base student learning of physics. 

Sherin also argued that mathematics and physics are inextricably 

intertwined.  �Mathematical expressions are part of the very language of physics� 

(2001, p. 480).  �My basic argument is that, at least in some cases, the students 

built equations from a sense of what they wanted the equations to express� 

(Sherin, 2001, p. 481). ��successful students learn to understand what 

equations say in a fundamental sense; they have a feel for expressions, and this 

understanding guides their work�. We do students a disservice by treating 

conceptual understanding as separate from the use of mathematical notations� 

(Sherin, 2001, p. 482) and finally ��naïve physics knowledge provides part of 

the conceptual basis in terms of which equations are understood� (Sherin, 2001, 

p. 483).   
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Sherin then created a structure of �symbolic forms� which act as 

mathematical analogues of diSessa�s p-prims.  Each form represents a basic 

mathematical concept.  Mathematical understanding is then constructed by using 

a combination of forms.  This would then indicate that the mind has an inventory 

of these forms to call upon in creating mathematical understanding. 

Marrongelle (2004) linked together the work of diSessa and Sherin to that 

of Wittmann in framing her study.  She linked together their theories of 

knowledge in mathematics, physics and problem solving; revealing shared 

elements that might indicate a common foundation.  �Wittmann found that 

students alter or revise their physical understanding to fit their misinterpretations 

of mathematics, or vice versa, in his study of students� understanding of waves� 

(Marrongelle, 2004, p. 259).  

Kieran (1992) described mathematics as consisting of two forms: 

procedural and structural.  Procedural mathematics is a lower level tool that 

mediates between Man and the world; allows us to make measurements and 

calculations about the world; and allows us to solve practical problems.  It is the 

mathematics that lets us calculate how much carpeting we need to cover a 

particular floor or how many eggs are in five dozen.  It is a very practical tool that 

has had a huge impact on man�s progress.  

Structural mathematics has been decontextualized from any specific 

problem, as well as the world.  It mediates between other mental mediational 

tools and does not attempt to connect to the world.  The concept of �functions� 

mediates between a range of mathematical and scientific concepts, but does not 
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directly connect to the world.  A key part of mathematics education is taking the 

procedural mathematics that students learn in earlier grades and 

decontextualizing it into a structural form. 

Their earlier work with simple formulas, such as P = 4 x S for the 

perimeter of a square [procedural mathematics], also provides a basis for 

understanding functions [structural mathematics] in their algebra classes.  

Furthermore, functions are taught in science classes too � but as 

dependency relations between variables.  (Kieran, 1992, p. 409) 

Kieran�s approach is consistent with that of Lakoff and Nunez in that she 

views procedural math as being directly tied to our perception of the world and 

structural math as being built on that foundation.  This is equivalent to viewing 

structural math as being the result of a metaphorical extension of procedural 

math. 

Hiebert and Lefevre (1986) take a slightly different path to arrive at similar 

conclusions.  They also divide mathematics into two categories: �procedural� and 

�conceptual�.  They further divide procedural mathematics into two parts: �formal 

language or symbol representation systems�.and algorithms, or rules, for 

completing mathematical tasks� (Hiebert & Lefevre, 1986, p. 6).  They see 

conceptual knowledge as being �rich in relationships�.a connected web of 

knowledge, a network in which the linking relationships are as prominent as the 

discrete pieces of information (Hiebert & Lefevre, 1986, pp. 3-4).  This definition 

of conceptual knowledge makes explicit its role as a mediating tool: this is very 

consistent with Kieran as well as Lakoff and Nunez.  
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 In this view, the symbols and algorithms of procedural mathematics are 

mental mediational tools that can work on their own or together; but they are 

much more effective if they themselves are mediated: conceptual knowledge 

plays that role.  Conceptual knowledge mediates between the individual and the 

world by mediating the use of other mediational tools, such as procedural 

knowledge.  This is why it is so difficult to assess conceptual mathematics: it 

always works in conjunction with procedural mathematics, never alone, so its 

effect is difficult to isolate. 

A persistent problem is that conceptual knowledge is difficult to measure 

directly, and it is often inferred through the observation of particular 

procedures for which it is assumed prerequisite.  The issue of what 

performance should be taken as evidence of a child having acquired a 

particular piece of conceptual knowledge is difficult to resolve� 

(Carpenter, 1986, p. 121) 

A classic example of the extension of procedural mathematics to 

conceptual (or structural) mathematics through the use of metaphor can be seen 

in the development of geometry.  Geometry was initially developed in Egypt to 

address the real-world problem of determining the boundaries of property after 

the flooding of the Nile had wiped away landmarks.  The term itself means �Earth 

measure� and was clearly grounded in the world. 

The ancient Greeks took Egyptian geometry and decontextualized it by 

having it speak about itself, not about the world.  Through the use of idealizations 

for points, lines, etc. geometry transcended the world and became a tool that was 
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able to mediate between other mental tools.  Instead of mediating between man 

and the land, geometry began mediating between ideas.  This was certainly 

evident by the time that Plato indicated, at the entrance to his Academy, �Let 

none who are ignorant about geometry enter here�.  Plato�s Academy was not 

there to make take measure of the land, but rather, to take the measure of ideas.  

Geometry had become a tool that mediated between ideas, other high level 

mediational tools, not between man and the world. 

Since then, mathematics has continued in the critical role of mediating 

between high-level mental tools.  Galileo, while not the first, very famously used 

mathematics as a tool to develop his scientific ideas.  Many of his important 

experiments used both procedural and conceptual mathematics in a way that 

established modern science.  The mathematics of kinematics, while originally 

based on real-world observations was decontextualized and developed 

independently of the world.  It is no more or less tied to observation than is 

geometry itself.  In fact, the method that Oresme (circa 1320-1382) used to 

develop the key kinematics equations anticipated the work of Galileo by centuries 

and was a direct application of geometry without any recourse to experiment.  

�Oresme�has attracted the attention of historians of science because of his 

ideas on kinematics and astronomy, which anticipated to some extent those 

developed by Galileo in the seventeenth century� (Holton & Brush, 2001, p. 72).  

Every physics course begins by establishing this foundation, a foundation 

that is a mathematical idealization: no observations or experiments are called for 

or would even make sense without first establishing it.  That foundation can be as 
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basic as conventions regarding measurements of space or time or involve more 

complicated relationships between those two concepts in the form of 

displacement, velocity and acceleration.  But some theoretical foundation must 

exist in order for observation and experiment to have meaning.   

A commonly agreed set of assumptions about the world must be in place 

before it is possible to even observe, or make measurements about, a ball rolling 

down a plank of wood and reach a scientific conclusion. �I believe that theory � at 

least some rudimentary theory or expectation � always comes first; that it always 

precedes observation; and that the fundamental role of observation and 

experimental tests is to show that some of our theories are false, and so to 

stimulate us to produce better ones. Accordingly I assert that we do not start from 

observations but always from problems � either from practical problems or from a 

theory that has run into difficulties� (Popper, 1979, p. 258). 

Modern science, as we think of it, could only begin when the mediational 

tool of mathematics was combined with the scientific processes of theorizing, 

experimenting and observing.  But mediation is a two way street.  Just as 

mathematics serves as a mediational tool in science, bringing greater meaning to 

science, science serves to bring meaning to mathematics.  There are an infinite 

number of possible mathematical systems.  They are developed in a manner that 

makes them self-consistent, but not necessarily useful outside of the domain of 

mathematics itself.  That tool chest of mathematical systems is constantly being 

filled with new ideas.  But until a mathematical tool has proven useful, it 

represents a sidebar in human sociocultural history, a practical dead-end.  Once 



 76

Galileo�s experiments proved the usefulness of the seeds planted by Oresme, 

that had lain dormant for hundreds of years, they could sprout.  With that 

usefulness firmly established, that branch of mathematics was selected to 

flourish.   

As is true of all mediational tools, they only become selected for survival 

when they have proven useful.  Useless tools are discarded while useful tools 

form clades that flourish.  All the branches of mathematics associated with the 

successful experiments of Galileo grew in importance and that entire 

mathematical perspective was incorporated into our culture.  Thus, mathematics 

mediated the advent of modern science, which led to science mediating the 

advance of mathematics. 

Just as ontogeny recapitulates phylogeny on a biological level, the same 

is true on the level of mediational tools.  A student must first learn the mediational 

tool of mathematics in order to explore physics.  However, the application of that 

tool to physics gives that mathematics new meaning.  Through its application to 

solving problems that mathematics is shown to be useful.  Once found 

meaningful and useful, human nature leads the student to practice the use of that 

tool until it is mastered.  A physics course that promotes the use of mathematical 

tools to solve rich and interesting problems will promote the learning of both 

physics and mathematics. 

Science and mathematics education 

Students learn the mediational tools of science and mathematics in a 

school environment.  These tools are distinct from the everyday understandings 
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that emerge from an unorganized interaction with the world.  As Popper puts it, 

��there seems to be a commonsense theory of knowledge: it is the mistaken 

theory that we acquire knowledge about the world by opening our eyes and 

looking at it, or, more generally, by observation� (Popper, 1979, p. 34).   

This separation from the everyday experience of the world is what makes 

these subjects so important in learning a theoretical approach towards problem 

solving.  Science education must encourage students to understand that �science 

is the domain of inquiry that goes beyond what our senses tell� (Duschl, Gedeon, 

Ellenbogen, & Holton, 1999, p. 530).  An important aspect of this is to help 

students understand the transition from ��sense perception observation to 

theory-driven observation�to cross the boundary from phenomenal common 

sense explanations to theory-driven scientific explanations� (Duschl, Gedeon, 

Ellenbogen, & Holton, 1999, p. 525).   

Hestenes et al. point out the need to build scientific understandings on the 

foundation of everyday thought (Hestenes, Wells, & Swackhamer, 1992).  �Every 

student begins physics with a well-established system of common-sense beliefs 

about how the physical world works derived from years of personal 

experience�.These beliefs play a dominant role in introductory physics� 

(Hestenes, Wells, & Swackhamer, 1992, p. 141).  As a result, physics education 

must build upon the knowledge that resides within the student when they enter 

the class, not battle with it.  �The commonsense alternatives to the Newtonian 

concepts are commonly labeled misconceptions.  They should nonetheless be 

accorded the same respect we give to scientific concepts.  The most significant 
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commonsense beliefs have been firmly held by some of the greatest intellectuals 

of the past, including Galileo and Newton� (Hestenes, Wells, & Swackhamer, 

1992, p. 142).     

How students intuitions can be used to teach them physics can be 

illustrated with a specific example.  In the section above, I discussed the notion of 

a �continuous push�: the intuitive belief that a continuous push is required to keep 

an object moving at constant speed: for instance in �continuously pushing a cup 

across a table� (diSessa, 1993, p. 131).  Newtonian physics views this as 

incorrect: objects that have a constant velocity maintain that velocity unless a net 

force acts upon them.   

Long efforts to overcome p-prims and convince students that they are 

�wrong� are usually met with frustration as rational explanations only hold within 

the context in which they are made: in a new context the student reverts to their 

p-prim.  This has been consistently found by the use of the Force Concept 

Inventory (Hestenes, Wells, & Swackhamer, 1992).  While heroic efforts have 

resulted in some progress in this measure, it must be recognized that there are 

equivalent p-prims guiding our intuition in a wide range of subjects: energy; 

thermodynamics; optics; fluids; magnetism; electricity; etc.  A lifetime could be 

spent developing �Inventories� for each of these and battling with students to lay 

down their p-prims. 

A more positive approach is to employ those p-prims as teaching tools 

and use them to solve problems.  While they will undoubtedly persist, 

overcoming them is not the goal of science education: we are aiming to develop 



 79

the analytical thinking and problem solving skills of our students so that they can 

think beyond their intuitions, not refute them.   

So, in this case, I would first develop the Newtonian framework wherein if 

no net force acts on an object it will maintain its velocity; then I would push an 

object and have it come to a stop when I stop pushing it; I would then ask the 

students to talk to each other to reconcile this apparent conflict.  They will 

themselves invent the force of friction in order to reconcile the two frameworks: 

their p-prims and the Newtonian theory.   

Without p-prims teaching physics would be impossible: we rely on 

students to understand the meaning of works like force; push; balance; light; 

dark; heavy; hot; cold; etc.  Without p-prims we would have no way to even begin 

talking about the world.  The same is true of mathematics: without physical 

intuition we would lack the words to speak of physics or mathematics. 

It is useful to consider those commonsense beliefs as being limited to 

certain contexts: the Newtonian framework subsumes those commonsense 

approaches in the same manner that Einstein�s General Relativity subsumes 

Newtonian gravity.  Each more general theory does not so much prove its 

predecessor wrong so much as prove itself more useful in a new context.  As 

Hammer states, �From the misconceptions perspective, students are not simply 

ignorant: They have knowledge about the physical world; their knowledge is 

reasonable and useful to them; and they use that knowledge to understand what 

they hear and see� (1995, p. 1319). 
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As we educate students we need to incorporate their everyday beliefs into 

a larger framework, not fight against them.  As diSessa put it, ��the 

development of scientific knowledge is possible only through reorganized intuitive 

knowledge� (diSessa, 1993, p. 108).  Those everyday beliefs are never fully 

replaced as they are still more useful in certain contexts than the more general 

theories.  Newtonian theory is still used to calculate the orbits of the Global 

Positioning Satellites but is useless in keeping their clocks synchronized.  Also, it 

is a lot easier to say that we will begin our hike at sunrise than when the rotation 

of the earth brings the sun above the horizon.  In fact, the system of celestial 

navigation used by ocean going vessels continues to use the Ptolemaic model of 

the earth being stationary: it is simply more useful, for that application, than the 

Copernican theory.   

Choosing between paradigms is a theme throughout modern physics.  

Thorne (1994), the Feynman Professor of Physics at Caltech, points out that he 

uses whichever paradigm works best for a particular problem.  The question of 

underlying reality is unimportant to him: the only question is usefulness.  He 

speaks of how �theoretical physicists, as they mature, build up insight into which 

paradigm will be best for which situation, and they learn to flip their minds back 

and forth from one paradigm to the other, as needed�They may regard 

spacetime as curved on Sunday, when thinking about black holes, and as flat on 

Monday, when thinking about gravity waves.  This mind-flip is similar to that 

which one experiences when looking at a drawing by M. C.  Escher� (Thorne, 

1994, p. 403).   
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Tao and Gunstone (1999) found that students also use different 

explanations in different contexts and for different purposes.  They cite Linder in 

making the argument that students use different conceptual models to explain 

phenomena in different contexts and that this is the same as what scientists do.  

They found in their study that �[students] vacillated between alternative and 

scientific conceptions from one context to another.  The vacillation shows that 

students accepted the scientific conceptions in some contexts but were unwilling 

to give up their alternative conceptions in other contexts�.In some contexts 

students find the scientific conception intelligible, plausible, and perhaps also 

fruitful, but in another context they find it intelligible, but not plausible, and 

therefore reject it� (Tao & Gunstone, 1999, p. 877).  Asking whether a concept is 

fruitful in a given context is the same as asking if it is useful.   

Wertsch explains that Vygotsky felt that the difference between scientific 

and everyday concepts is that scientific concepts fit into an overall system while 

everyday concepts do not.  �[The] first and most decisive distinction between 

spontaneous and nonspontaneous, especially scientific, concepts is the absence 

of a system in the former� (1934a, p. 194)� (Wertsch, 1985, pp. 102-103).  

Importantly, this allows scientific concepts to deal with other concepts and not 

just with the objects being observed. �In the case of spontaneous concepts, the 

child�s attention is �always centered on the object being represented and not on 

the act of thought that grasps it� (ibid.).  In contrast, �scientific concepts, with their 

quite different relations to an object, are mediated through other concepts with 
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their internal, hierarchical system of interrelationships� (ibid.)� (Wertsch, 1985, pp. 

102-103). 

Scientific concepts are also unique in that, while being theory-driven, they 

must also meet the criteria of being testable.  Just because an idea seems 

reasonable and is consistent with previous beliefs does not make it scientific.  

�When Kant said that our intellect imposes its laws upon nature, he was right � 

except that he did not notice how often our intellect fails in the attempt: the 

regularities we try to impose are psychologically a priori, but there is not the 

slightest reason to think that they are a priori valid, as Kant thought� (Popper, 

1979, p. 24).  

Chinn and Brewer (1993) point out that students come to school not only 

with a commonsense understanding about the world but also a set of 

epistemological beliefs about science.  �There is evidence that even the youngest 

elementary school students are guided by a sound �commonsense� epistemology 

(see Conant, 1951)� and �children come to school already equipped with some of 

the criteria for judging among scientific theories, criteria have been proposed by 

such philosophers of science such as T. Kuhn (1977) and Laudan (1977) as 

rational criteria for making choices among scientific theories� (Chinn & Brewer, 

1993, p. 16).  These epistemological beliefs must be recognized by instructors as 

they form a foundation for future learning. 

Decontextualization is fundamental to the cladistics view of science and 

mathematics.  As in the development of each mediational tool, the process of 

developing a new tool begins with concrete experience and interaction with the 
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world.  However, as a mental tool is refined it separates from the original context 

in which it was developed and takes on its own meaning and usefulness which 

can be applied to other contexts and with respect to other tools.  Wertsch points 

out that science and mathematics must be understood in that sense as being 

separate from their initial contexts. 

[Vygotsky] argued that the forms of counting observed in primitives is 

heavily dependent on the context; that is, counting relies on the perception 

of concrete objects and settings�.  In calculation, decontextualization is 

tied to the emergence of a number system in which a quantity can be 

represented independently of any concrete perceptual context.  Indeed 

quantity can become an abstract object itself instead of a meaning tied to 

a set of concrete objects.  With decontextualization, it becomes possible to 

talk about two or three without specifying two or three what.  

Systematization makes it possible to account for the meaning of 

mathematical signs without relying on the context to their use or 

application.  Thus two can be defined within the number system as one 

plus one, three minus one, four minus two, and so on. (Wertsch, 1985, p. 

33) 

This separation of general scientific or mathematical concepts from the 

specific context in which they were first developed was one of the specific values 

that Vygotsky saw in the learning of science.  The separation of the subject from 

its context leads the student to make deliberate use of a higher degree of 

theoretical thinking, to be able to generalize from specific cases to general 
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principles.  This theoretical approach could then be applied to developing a 

problem solving approach that would have more general value.  

Hiebert and Lefevre (1986) described this same sort of layered process of 

learning when they spoke of how students first learn procedural knowledge, 

which then leads to the learning of conceptual knowledge.  More specifically, 

they described how procedural and conceptual knowledge naturally develop in 

tandem before students enter school and how these two forms of knowledge 

often became separated in the school environment where procedural knowledge 

is not used, as it should be, to form the basis of conceptual knowledge.  

�Although it is possible to consider procedures without concepts, it is not easy to 

imagine conceptual knowledge that is not linked to some procedures� (Hiebert & 

Lefevre, 1986, p. 9).  However, for procedural knowledge to be effectively 

employed it must be mediated by conceptual knowledge.  The medication of 

procedural knowledge by conceptual knowledge can: �(a) enhance problem 

representations and simplify procedural demands; (b) monitor procedure 

selection and execution: and (c) promote transfer and reduce the number of 

procedures required� (Hiebert & Lefevre, 1986, p. 11). 

For Vygotsky scientific concepts are characterized by a high degree of 

generality and their relationship to objects is mediated through other 

concepts.  By the use of �scientific concept� Vygotsky referred to concepts 

introduced by a teacher in school, and spontaneous concepts were those 

that were acquired by the child outside contexts in which explicit 

instruction was in place.  Scientific concepts were described as those 
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which form a coherent, logical hierarchical system.  According to Vygotsky 

(1987) children can make deliberate use of scientific concepts, they are 

consciously aware of them and can reflect upon them. (Daniels, 2001, p. 

50) 

Vygotsky viewed the development of a theoretical approach to the world 

as a key value of formal education in general and scientific education specifically.   

This is accomplished by the development of testable theories that explain the 

world.  As Bruner describes it, �What is unique about us as a species is that we 

not only adapt to the natural and social worlds through appropriate actions, but 

we also create theories and stories to help us understand and explain the world 

and our actions in it� (1997, p. 64).  We then connect these stories about the 

world into a structure where these stories relate to each other.  

The dependence of scientific concepts on spontaneous concepts and their 

influence upon them stems from the unique relationship that exists 

between the scientific concept and its object�this relationship is 

characterized by the fact that it is mediated through other concepts.  

Consequently, in its relationship to the object, the scientific concept 

includes a relationship to another concept, that is it includes the most 

basic element of a concept system. (Vygotsky, 1987b, p. 192) 

This can be seen specifically in the relationship between arithmetic and 

algebra.   

We found an analogous relation between old and new formations in the 

development of concepts of arithmetic and algebra.  The rise from 
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preconcepts (which the schoolchild�s concept of arithmetic usually are) to 

true concepts, such as the algebraic concepts of adolescents, is achieved 

by generalizing the generalizations of the earlier level.  At the earlier stage 

certain aspects of objects had been abstracted and generalized into ideas 

of numbers.  Algebraic concepts represent abstractions and 

generalizations of certain aspects of numbers, not objects, and thus 

signify a new departure � a new, higher plane of thought. (Vygotsky, 1986, 

p. 202) 

Learning a foreign language raises the level of the child�s native speech in 

much the same what that learning algebra raises the level of his arithmetic 

thinking.  By learning algebra, the child comes to understand arithmetic 

operations as particular instantiations of algebraic operations.  This give 

the child a freer, more abstract and generalized view of his operations with 

concrete quantities.  Just as algebra frees the child�s thought from the 

grasp of concrete numerical relations and raises it to the level of more 

abstract thought, learning a foreign language frees the child�s verbal 

thought from the grasp of concrete linguistic forms and phenomena. 

(Vygotsky, 1987b, p. 180) 

The everyday understandings that each student brings with them to the 

classroom are correct within their context.  It is not the role of science education 

to confront those beliefs and try to prove them wrong.  Science education must 

show students how their prior beliefs and understandings are particular outcomes 

of more general principals.  At the same time, it must show the usefulness of 
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learning the more general principles.  After all, Man has survived with those 

�mistaken� beliefs for millennia, so they must be effective in their context: why 

construct new understandings that contradict those beliefs. 

Confronting students� prior beliefs leads, at best, to piecemeal acceptance 

and understanding.  On the other hand, teaching them the theoretical style of 

thinking that allows them to understand both the new scientific principle and see 

how it subsumes their prior understanding accomplishes two things: it helps them 

learn the new principle as well as a theoretical/analytical style of thinking.   

However, no matter how well they are taught, students should not be expected to 

discard their prior understandings in a few years of instruction.  Committed 

scientists make serious, but only partial progress, towards that goal within their 

own fields over the course of their lifetime.  A more reasonable outcome for 

mathematics and science education is the adoption of the thinking strategies that 

are their hallmark. 

Problem Solving: A Key Objective of Science and Mathematics Education 

The coordinated instruction of physics and algebra serves to expose 

students to physics applications of algebra concepts while those concepts are 

being learned in algebra.  This application increases students� drive to learn 

algebra, in particular, and mathematics, in general, by showing its usefulness, an 

important aspect of motivation.  �Some of the most widely decried failures of 

transfer - failure to apply knowledge learned in school to practical problems 

encountered in everyday life - may largely reflect that material taught in school is 

often disconnected from any clear goal (Gick & Holyoak, 1987, p. 131)� 
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(Butterfield, Slocum, & Nelson, 1993, p. 232).  While the goal of being able to 

solve physics problems is itself confined to the school environment, it reflects a 

task that requires algebra, and thereby represents a benefit of learning algebra.  

Further to that point, ��freshman who enjoy physics often see that math will help 

them understand it better, getting them excited about math as well as science�  

(Pasero, 2003, p. 15).   

Also, the physics course provides an increase in the number of algebra 

problems each student encounters. 

Given more examples, students can form a frame (or script or schema) or 

a set of discriminative stimuli that make an appropriate response more 

likely for subsequent problems.  Viewing choice of solution to later 

problems as a matter of analogical reasoning, we can say that more 

examples allow structural features and goals to affect access to a learned 

solution and to guide appropriate mapping onto later problems (Carbonell, 

1986; Holyoak, 1985).   

(Butterfield, Slocum, & Nelson, 1993, p. 219) 

Therefore, the physics course should improve the mathematical 

understanding being developed in the algebra class.  Beyond that, both the 

algebra and physics courses should build general problem solving skills.  These 

skills represent a crucial goal of the study of physics and mathematics. 

Subjects taught in school are presumed to benefit the student beyond the 

specific material taught in a particular class.  This is certainly the case for 

physics.  Very few college students in a physics course are physics majors.  
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Even among those who graduate as physics majors, most report that the content 

taught in their physics classes was the least important knowledge they gained.   

In his 1999 Millikan lecture, Alan Van Heuvelen (2001) cited a survey, 

conducted by the American Institute of Physics, among students who had 

received degrees in physics and were in the workplace.  Respondents were 

asked to rank ten skills that they had learned in their study of physics in the order 

of importance that they played in their occupation.  It was found that �physics 

knowledge was the least used �skill� reported in this list� (Van Heuvelen, 2001, p. 

264). The top skill that they indicated learning from their physics courses was 

�problem solving�. 

McDermott speaks to the problem of the mismatch between instructor and 

students in a typical college introductory physics course due to the fact that only 

1 in 30 of the students in the class is a physics major and instructors tend to think 

of their students as being �very much like themselves� (McDermott, 1991, p. 

302).  This would be even more of an issue in a high school physics class and 

emphasizes the need to teach to a more general goal, such as problem solving, 

rather than with the goal of turning students into physicists.   For instance, 

�Scardamalia and Bereiter (1991, 1996) suggest that the kind of education that 

will best prepare students for life in a knowledge society should foster: flexibility; 

creativity; problem-solving ability; technological literacy; information-finding skills; 

and a lifelong readiness to learn� (Daniels, 2001, p. 103). 

Reif supports this when he states that, �students will have to function in a 

complex and rapidly changing technological world where they will profit little from 
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knowledge that is rotely memorized or poorly understood� (1995, p. 17).  He goes 

on to say that �one should try to analyze the thought processes required for 

effective problem solving, and that one should then try to teach explicitly a 

problem-solving method based on this analysis� (Reif, 1995, p. 27). 

For high school students this argument is even stronger since very few go 

on to become science or mathematics majors.  Therefore, the teaching of 

physics must have value outside the realm of physics knowledge itself.  It must 

reside in something much more general, such as �problem solving.�  �Wells 

(1994a) further suggested that the learning of school knowledge, and specifically 

the development of scientific concepts, tends to be treated as an end in itself.  He 

proposes rather it should be understood as the appropriation and further 

development of a set of tools that is used for problem solving in the achievement 

of goals that the students find personally significant� (Daniels, 2001, p. 101). 

Hammer et al. concluded that instruction in how to solve specific problems 

(sequestered problem solving or SPS) and instruction aimed at solving unknown 

future problems (preparation for future learning or PFL) might differ.  They stated 

that, if confirmed, this would have �implications that are profound, for both 

instruction and assessment�.  Specifically, this would mean that the �effort that 

has gone into developing instructional materials that help students overcome 

common misconceptions, as measured by standardized assessments such as 

the Force Concept Inventory�., we might be shortchanging our students in the 

long run� (Hammer, Elby, Scherr, & Redish, 2000, p. 23).   
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The same is true for mathematics.  The mathematics taught to students in 

high school is for the most part applicable only in later mathematics and science 

classes.  It is the rare individual who solves trigonometric equations, or even 

algebraic equations, in daily life. Therefore, the goal of problem solving has 

emerged as a prime focus of mathematics education.  As Schoenfeld (1992) 

states, �problem solving has, as predicted in the 1980 Yearbook of the National 

Council of Teachers of Mathematics (Krulik, 1980, p. xiv) been the theme of the 

1980s� (pp. 334-335).   

Physics and mathematics share the common goal of teaching students to 

become good �problem-solvers�.  As Alan Van Heuvelen put it, �One objective of 

our instruction is to help students learn to (1) construct qualitative 

representations of physical processes and problems, (2) reason about the 

processes using these qualitative representations, (3) construct mathematical 

representations with the help of the qualitative representation, and (4) solve the 

problem quantitatively.  Students are learning to think like physicists� (Van 

Heuvelen, 1991, p. 892).  Similarly, Schoenfeld (1992) said that an important 

goal of mathematics instruction is to �help students to develop a �mathematical 

point of view� � a predilection to analyze and understand, to perceive structure 

and structural relationships, to see how things fit together.  (Note that those 

connections can either be pure or applied.)  It should help students develop their 

analytical skills, and the ability to reason in extended chains of argument� (p. 

345). 



 92

Van Heuvelen and Schoenfeld described similar outcomes for the 

successful student.  Each valued their field for the reasoning and problem solving 

skills it builds in those that study it.  With such similar goals, it seems reasonable 

that mathematics and physics should prove to be complementary disciplines.  

In Heller et al.�s work on developing problem solving skills in physics 

through group work it was noted that  �the basic form of the five-step strategy 

designed for our students was strongly influenced by the work of Frederick Reif 

and Joan Heller, but it has many elements in common with Alan Schoenfeld�s 

framework for mathematics problem solving� (Heller, Keith, & Anderson, 1992, p. 

628).  The authors of this study recognized that the problem solving approaches 

of mathematics and physics are deeply related. 

An important part of problem solving is the ability to generate mental 

models that can be used to envision and compare alternative solutions.  In 1994, 

Redish decried typical physics classes for their failure to develop the skills 

needed to develop those models, ��as physics teachers we fail to make an 

impact on the way a majority of our students think about the world� (p. 796).  In 

his 1998 Millikan lecture, Redish (1999) expanded on this, stating, �physics is 

really about building mental maps that allow us to make sense of the world.  To 

do this we have to create map structures that match not only what happens in the 

physical world but the ways we can comfortably think about it� (p. 570).   

Teaching physics and mathematics must develop in students the ability to 

solve both simple concrete problems as well as complex open ended problems.  

The former are similar to the highly structured problems found at the end of most 
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mathematics and physics textbooks.  People confront a number of these 

straightforward problems every day so the value in learning how to solve them 

should not be ignored.  In fact, a good percentage of one�s life is spent dealing 

with concrete low level problems.  Some examples include which cereal box size 

offers the best value, how many widgets to place on your next reorder or how 

much of a tip to leave on your lunch bill.  This sort of exercise is like the low level 

problems found in an algebra or physics book.  They come in a lot of forms and 

confront people every day. 

But people also encounter complex multi-step problems.  As problems 

become more complex their solution requires the construction of a mental map 

describing the problem and allowing the playing out of alternative solutions.  

Thus deciding whether to buy a home or rent an apartment raises questions of 

cash flow, marital plans, job satisfaction, job stability, analysis of the cost of 

buying versus renting, projections about the future real estate market, etc.   A 

myriad of factors must be identified and played out against each other in order to 

arrive at a solution.  Addressing this sort of open ended problem is much more 

complex than the most ambitious problems at the end of a chapter of a standard 

mathematics or physics textbook.  However, the required problem solving skills 

are not fundamentally different from those learned in solving the more complex 

multi-step problems that should be part of a physics or mathematics curriculum.   

Problem solving is both an educational goal and an educational technique.  

The mediational tools that are employed are all supported in the process of 

solving a problem: they are given meaning, shown to be useful and are practiced.  
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Thus problem solving is a means of helping students construct the mediational 

tools that are employed.  However, problem solving is also a highly regarded 

outcome in its own right.  The ability to think analytically and work through 

complex problems is highly valued by both individuals and society. 

Problem solving in mathematics and physics allows the development of 

those skills in a simpler context than is available in everyday life.   But developing 

those skills and then using them to solve problems in multiple settings requires 

that transfer take place between domains. 

Transfer and Mental Models 

�Transfer cannot be distinguished from learning.  Teaching and learning 

are a tapestry that does not lend itself to such labels as near transfer and far 

transfer� (Butterfield, Slocum, & Nelson, 1993, p. 219).  If education in general, 

and science or mathematics education in particular, is to have more applicability 

and value than teaching students to solve specific textbook problems in a specific 

classroom on a specific day, transfer is critical.  Otherwise, the goal of imparting 

the skills to solve a range of problems in a variety of domains cannot be 

achieved.  

The question of whether transfer occurs is hotly debated.  However, 

issues of definition obscure much of this debate.  Detterman (1996) explained 

that �transfer� can refer to near or far transfer, involve specific or general content 

and be affected by deep or surface structure.  This would lead to the conclusion 

that the question of whether transfer is likely to occur cannot be answered 

without precisely specifying the type of transfer.  Instead, he concluded that, �we 
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generally do what we have learned to do and no more.  The lesson learned from 

studies of transfer is that if you want people to learn something, teach it to them.  

Don�t teach them something else and expect them to figure out what you really 

want them to do� (p. 21).  This extreme position could be interpreted to mean that 

being taught to drive one car would not help in driving another one.  Of course, 

that does not make sense.  This position violates common sense and is not 

supported by the literature. 

Gick and Holyoak (1980) conducted a pivotal series of experiments aimed 

at answering the questions, �Where do new ideas come from?  What 

psychological mechanisms underlie creative insight� (p. 306)?   The generation of 

new ideas through inter-domain analogical thinking would have to be considered 

far transfer.  They used Duncker�s (1945) radiation problem as their test problem 

and used a range of varyingly analogous problems for training.   

In Duncker�s radiation problem, a patient has an inoperable stomach 

tumor. Certain rays with sufficient intensity can destroy organic tissue.  How can 

those rays be used to destroy the tumor without also destroying the healthy 

tissue surrounding it?  The correct solution is to direct the rays at the tumor from 

a number of different directions so the tumor receives a fatal dose while the 

healthy tissue does not.  Without any training, with analogous problems, only 

10% of subjects arrived at this solution. 

Far better results were achieved by students who had been taught how to 

solve an isomorphic problem.  The more isomorphic the training problem, the 

more likely it was to be used to find the correct solution to the radiation problem.  
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Being told that the training problem would be helpful increased its successful 

use.  The most analogous story involved a general who wanted to capture a 

fortress.  A system of roads led to the fortress like spokes on a wheel.  However, 

he could only send a small army down any one road.  The solution was to send 

many small forces down each road so that they converged at the fortress.   

In the first experiment, subjects were told that the analogous story would 

help to solve the radiation problem and the results dramatically demonstrated 

transfer.  �All 10 subjects who were given the Attack-Dispersion story produced 

this [correct] solution, whereas not a single control subject did so� (Gick & 

Holyoak, 1980, p. 320).   

In a later experiment, subjects were first asked to solve the radiation 

problem without being given the hint that the analogous story could help.  About 

20% solved the problem (Gick & Holyoak, 1980, p. 342).  After being given a hint 

to use the training story that rose to 75%.  This compares to only 10% of those 

given no analogous story being able to solve the problem.  Significant transfer 

occurred without the hint, and was dramatically enhanced by the hint.  These 

experiments showed that inter-domain transfer could be robust. 

Gick and Holyoak (1983) later extended their research to determine if 

there were methods of improving the spontaneous recognition of analogous 

solutions.  They found that the use of two analogous stories, combined with 

having the subject summarize the principle connecting those two stories, 

significantly improved performance.  This was most effective when a diagram 

was used to explain the solutions.  Subjects were able to spontaneously 
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recognize the solution to a new problem 60% of the time and, with a hint, more 

than 90% of the time. 

This study showed that it is possible to transfer prior learning to new 

problems.  It also showed that the best way to accomplish that is with multiple 

examples and multiple representations, in this case diagrams.  Interestingly, an 

explanation, by the experimenter to the subject, of the underlying principle added 

very little to the ability to solve later problems. 

Bassok and Holyoak (1989) found strikingly asymmetrical transfer 

between algebra and physics, with robust transfer from algebra to physics and 

almost no transfer from physics to algebra.  This was attributed to characteristics 

of those domains and threatened the idea that physics was a productive training 

ground for problem solving. 

However, in 1990, Bassok reversed herself on that conclusion.  She 

recognized that while the algebra training problems in the 1989 study were 

isomorphic with the test problems, the physics training problems were not.  The 

physics training problems used intensive (rate-like) quantities, such as meters 

per second, while the algebra training problems and the test problems used 

extensive quantities, such as dollars.  After noting that this led to an unfair 

comparison, she redid the study and found that transfer from physics to other 

fields can be robust, a significant reversal from the conclusion of the 1989 paper.  

Unfortunately, the change was presented with sufficiently subtlety that references 

are still made to the mistaken conclusion of the 1989 study (Bassok, 1990). 
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I quote her at length below as the previous study (Bassok & Holyoak, 1989) has 

been cited extensively over the years to support a position that Bassok (1990) no 

longer supports. 

 Kaput (1986) argues that variables denoting extensive quantities and 

those denoting intensive quantities may imply different interpretations of 

the operations that are permitted on them�. Transfer from physics could 

have been blocked by � by the mismatch between the intensive variable 

of speed and the conceptually extensive variable in the transfer problems 

(e.g., people, chairs)�. The present study substantially extends the 

results of the Bassok and Holyoak (1989) study showing that abstraction 

and transfer can be obtained following training in content-rich quantitative 

domains and are not limited to content-free algebraic training�. In 

Experiment 2 (intensive condition) after learning a physics chapter dealing 

with accelerated motion, 70% of the students spontaneously recognized 

that constant decrease in the formation of precipitate is like deceleration 

and that the total amount of precipitate can be calculated by using the 

distance equation introduced in the physics chapter (Bassok, 1990, pp. 

531-532). 

 Smith and Unger (1997) discussed intensive versus extensive quantities in 

their literature review, indicating that �the development of proportional reasoning 

[involving intensive quantities] is a gradual and protracted process�extending 

well into adolescence and adulthood� (p. 147).  This further illuminates the 

asymmetry of the Bassok and Holyoak (1989) study which used quantities of 
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money or lengths (discrete and extensive) in the domain of algebra while using 

meters per second (continuous and intensive) in the domain of physics.  �One 

reason that intensive and extensive quantity pairs in physics may be so difficult to 

distinguish is that they involve continuous quantities that cannot be directly 

visually apprehended (such as density and mass, temperature and heat)� (Smith 

& Unger, 1997, p. 147).   

 Smith and Unger (1997) studied transfer between problems involving 

three intensive quantities that varied in discreteness: dots per box, sweetness 

and density.  The dots-per-box model was fundamentally discrete, while 

sweetness was made somewhat discrete by measuring it in spoonfuls of sugar.  

No attempt was made to create a discrete model of density.   

  The subjects, twenty 7th grade students, best understood dots-per-box and 

least understood density.  Smith and Unger found that some transfer occurred 

from dots-per-box to sweetness, but almost no transfer occurred from either of 

those to density.  The more continuous and/or intensive the quantity, the more 

difficult it is for students. 

They also found that �asking students to make connections between two 

domains that are not equivalently understood typically enhances understanding 

of the less well understood domain in a supportive, socially scaffolded 

instructional context�.  Hence it is wise to ensure strong understanding of the 

source domain first� (Smith & Unger, 1997, p. 174).  This supports the idea of 

inter-domain transfer and emphasizes the need for a positive open environment 
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to facilitate that transfer.  Interpersonal dialogue, symptomatic of an open 

environment, facilitated transfer. 

 Marrongelle (2004) posed the question, �how [do] students in an 

integrated calculus and physics class use physics to help them solve calculus 

problems� (p. 258).  In this case study, she monitoring eight students in an 

integrated physics / calculus course and found that �some students introduce 

contexts to solve mathematics problems; this result suggests that students can 

use contexts in meaningful ways to solve mathematics problems, contrary to past 

research that has pointed out the difficulty students have solving problems in 

context� (Marrongelle, 2004, p. 258).  �For both Rob and Brad, the derivative 

concept is first and foremost thought of in terms of kinematics� (Marrongelle, 

2004, p. 264). 

Novick (1988)studied the use of analogous stories to determine what 

factors affected transfer between different problems.  After carefully outlining the 

Gick and Holyoak (1980) study, she hypothesized that while analogy was an 

effective means of transfer, surface features of stories prevented subjects from 

recognizing analogous solutions.  In a series of experiments, she presented 

analogous stories to subjects and determined when negative and positive 

transfer occurred.  Negative transfer is when surface features lead to false 

solutions between situations that appear analogous but are not, while positive 

transfer is when reasoning by analogy leads to correct solutions.  Novick (1988) 

found that �substantial positive transfer was observed for experts but not for 
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novices.  Spontaneous negative transfer was observed at all levels of expertise, 

but was weaker for experts� (p. 518).   

Novick defined expertise by the subject�s score on the mathematics 

section of Scholastic Aptitude Test (MSAT), indicating that subjects who perform 

well on that mathematics test had a higher level of transfer between training and 

testing problems.  As training in mathematics does improve performance on that 

test, this suggests that students can, through the study of mathematics, improve 

their ability to effect problem solving transfer.   

 Reed, Dempster and Ettinger (1985) studied the use of analogous 

problems for solving mathematical word problems.  They conducted experiments 

in which some subjects were trained to solve problems that were related to the 

test problem while a control group worked on unrelated problems.  Students who 

understood the reasoning behind the solution of the training problem achieved 

the best results.  �These results demonstrate that students can use solutions of 

algebra word problems to solve equivalent problems if the solutions are 

accompanied by an explanation of why a particular equation is used� (Reed, 

Dempster, & Ettinger, 1985, p. 117).   Importantly, subjects needed to 

understand the reasoning behind how to solve the training problem in order to 

benefit from it.  Memorizing a procedure did not teach them transferable problem 

solving strategies.  That understanding results in improved transfer supports the 

idea that effective instruction is critical to developing problem solving ability.  If 

problem solving is the goal, having students memorize procedures or passively 

listen to lectures is a waste of time.    
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Kieran (1992) pointed out the challenge of establishing transfer between 

qualitative and quantitative understandings of mathematics as well as to science, 

stating that �generating equations to represent the relationships found in typical 

word problems is well know to be one of the major areas of difficulty for high 

school algebra students� (p. 403).  She then highlighted the failure to make 

connections between structural (qualitative) mathematics, procedural 

(quantitative) mathematics and science.  She partially attributed this to the failure 

to make connections between academic classes.  In the following example, the 

qualitative understanding that is targeted is the structural concept of 

mathematical �function�. 

Their earlier work with simple formulas, such as P = 4 x S for the 

perimeter of a square [procedural mathematics], also provides a basis for 

understanding functions [structural mathematics] in their algebra classes.  

Furthermore, functions are taught in science classes too � but as 

dependency relations between variables.  However, the teaching of 

functions in algebra courses does not appear to capitalize on any of this 

prior experience. (Kieran, 1992, p. 409) 

The failure of schools to coordinate the learning happening in different classes, 

either vertically (year to year) or horizontally (course to course) represents lost 

opportunity. 

 Ploetzner and VanLehn used the data from a 1989 study by Chi, Bassok, 

Lewis, Reimann, and Glaser and used that data to create �computerized 

simulation models of both conceptual problem solving and quantitative problem 
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solving� (Ploetzner & VanLehn, 1997, p. 171).  They viewed conceptual and 

quantitative understandings of physics as distinct entities and then measured the 

transfer between them.  They treated standard textbook training as quantitative 

and viewed any gains in conceptual understanding as transfer.  (This approach 

might also be applicable to a study of transfer between procedural and structural 

mathematical understanding.)  They found that �the degree of transfer that 

occurred between them [quantitative to qualitative understanding] was 41%.  This 

is comparable to other studies of transfer from standard physics training to 

qualitative understanding� (Ploetzner & VanLehn, 1997, p. 175).   

They also found cases where �the student not only might have learned 

and repeatedly applied the definition of Newton�s second law as it has been 

explicitly presented in the instruction but also might have derived and constructed 

knowledge about qualitative aspects of Newton�s law that have been left implicit 

in the instruction� (Ploetzner & VanLehn, 1997, p. 186).  This would represent a 

case of far transfer of deep structure. 

Mitchell and Miller (1995) had fifth-grade students roll balls down a ramp 

whose angle could be altered.  The students were asked to estimate, and then 

create a model, for determining the relationship between ramp angles and 

landing sites.  The researchers found that �children�s conceptions of the laws of 

motion, introduced by Eckstein and Shemesh (1993) are extended with an 

emphasis placed upon the benefits to mathematics education� (Mitchell & Miller, 

1995, p. 260).  Concluding, �The investigations � provide fascinating 

opportunities for students to study a wide variety of topics in mathematics.  They 
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will begin to realize that mathematics is a tool which can be used to help them 

understand their environment� (p. 262).  It is unfortunate that actual student 

reactions and conceptual gains were not noted in the article, only possible 

prospective gains. 

A rare opportunity to study transfer in a natural, non-academic, setting 

arose when a consolidation at their company forced a group of aeronautical 

technicians, who had had three different, but related, jobs to learn the other two 

jobs.  Each of them needed to transfer their prior knowledge into two new 

domains (Gott, Hall, Pokorny, Dibble, & Glaser, 1993).  The authors quoted Gick 

and Holyoak (1987) in support of their position that this learning was a type of 

transfer. 

No empirical or theoretical chasm separates transfer from the general 

topic of learning.  Rather, the consequences of prior learning can be 

measured for a continuum of subsequent tasks that range from those that 

are merely repetitions (self-transfer), to that are highly similar (near 

transfer), to those that are very different (far transfer).  (Gott, Hall, 

Pokorny, Dibble, & Glaser, 1993, p. 260) 

It was found that a major obstacle to transfer among these adult men was an 

unwillingness to ask questions and admit what they did not know.  Without a 

sufficiently open risk-free environment the workers chose to protect their egos 

rather than learn. 

The researchers partially overcame this by casting the learning as a 

competition and indicating that the top management thought that they could not 
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do it.  �To overcome the ego barriers associated with revealing one�s lack of 

knowledge by the act of questioning, technicians were told that the highest level 

management in their organization was questioning the value of the months of 

resident training�. We then issued what amounted to a challenge to them to 

show everyone�� (Gott, Hall, Pokorny, Dibble, & Glaser, 1993, p. 274).  The 

need for motivation and a safe environment for one�s ego, to promote transfer, is 

illustrated by this example and the same principle probably applies to the 

classroom.  The need for open dialogue was also clear from their description 

successful learners. 

All of the technicians who showed improved performance on the posttests 

actively interrogated the expert tutors during the Learning Phase as they 

constructed their own understanding of the problems.  They asked more 

questions, and they also produced more self-explanations, often 

generating additional questions from their elaborations.  By comparison, 

weaker performers tended to ask fewer questions, showed little evidence 

of self-explanation, and often engaged in unproductive actions and 

questioning tactics. (Gott, Hall, Pokorny, Dibble, & Glaser, 1993, p. 281) 

Another finding from this study was that �the primary content of transfer 

takes the form of abstract knowledge representations�. We observed good 

learners access their existing mental models of equipment structure and 

functions�. They then used these models to guide their performance as they 

crafted solutions to new problems� (Gott, Hall, Pokorny, Dibble, & Glaser, 1993, 
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p. 286).  This describes the generalized problem-solving process that is the goal 

of effective instruction. 

Specifically, transfer has been shown to be robust in both directions 

between physics and mathematics.  Generally, transfer is very much improved 

when individuals are told that what they have learned in one setting will be useful 

in the new setting; when problems are isomorphic with one another; when 

learners are motivated; and when the underlying reasoning behind the solution to 

the source problem is understood.   

This means that transfer can be promoted in a school environment 

through a school�s overall program design: accomplishing this involves 

curriculum development stressing cross curricular articulations; professional 

development; and a pedagogical approach that stresses reasoning.  Curricula 

must first be developed in such a way that there are connections between what 

students are learning in their various classes. Then the instructors in each course 

must be aware of those articulations and point them out to their students so as to 

promote their transfer.  The pedagogical approach used in each class must 

stress understanding as opposed to recall: transfer is enhanced if the reasoning 

behind solutions is understood.  Finally, motivation will be enhanced by students 

seeing that what they have learned in once class is useful in another. 

Summary 

Science and mathematics education are compelling national priorities.  An 

educational approach that advances achievement in both these areas would be 

of great interest to the educational community.  The approach analyzed in this 
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study attempts to accomplish that goal, in part, reversing the sequence in which 

the sciences are taught.   

The controversy of the order in which the sciences should be taught 

extends back more than a century: an analysis of the science content leads to 

physics-chemistry-biology but the math required for the first year course has led 

to the reverse.  There has been a tension between the mathematics content and 

the physics content of any proposed first year physics course.  The recent 

evolution in the curricula of those courses is an attempt to resolve that tension: 

an attempt that is now proving successful.    

Our goal must be to understand our perceptual and cognitive structures 

and use them as a foundation on which to construct an understanding of the 

world that transcends them.   While humans are not able to change their 

perceptual and cognitive structures; they have been able to develop mediational 

tools that stand between themselves and the world in order to interact with it 

more effectively.  We are uniquely capable of being able to improve those tools 

and pass them along to succeeding generations.   

Our cultural heritage represents the grand total of all the tools that have 

been developed, improved and passed along by prior generations.  They 

represent a key element of human progress.  The medium of biological evolution 

is DNA: the medium of tool evolution is society.  A vital role of society is to 

improve and pass along tools from one generation to the next.  As our tools 

became increasingly complex institutions were developed to expedite their 

transmission: educational institutions.   
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 Education plays a fundamental role in the transmission of mental tools 

from generation to generation.  It is certainly not to be expected that any child will 

discover these tools; if that were possible children would have discovered them 

millennia ago.  The cultural heritage of our mediational tools represents our 

rightful inheritance; an inheritance that has been improved and passed along by 

all who came before us.  Creating the conditions by which mediational tools may 

be successfully passed on to the next generation is the role of education: making 

education central to human society.   

 Educational tools were developed, improved and are efficiently passed 

along to the next generation in a social context: they will not be discovered by 

students on their own without the help of a teacher; they are very ineffectively 

transmitted by lecture; and they are reinforced by being actively used to solve 

problems.  Problem solving serves both as a medium in which prior tools are 

used, and thereby shown to be useful, and in which new tools are developed.  

Since usefulness is a driver of both tool construction and evolution, it is a critical 

element in the educational process.  A rich problem solving environment, 

maintained by an actively involved teacher, promotes student learning.   

When students are in their Zone of Proximal Development they not only 

enjoy solving problems; they feel the joy of growing and becoming more 

effective.  Students in this zone can be pictured as riding a wave.  If they fall 

behind it, because the problems are too easy, they get bored and do not 

progress.  If they get ahead of it, if the problems are beyond the group�s ability; 

they get overwhelmed, become frustrated and give up.  But if the problems keep 



 109

the students just at the edge of their ability, it is exciting to watch how quickly 

they progress. 

Science and mathematics are clades of mediational tools that are learned 

and improved upon by each succeeding generation.  As is the case with all tools, 

they must be shown to be useful: usefulness drives tool development, 

construction and evolution: useless tools are not selected for learning.  However, 

usefulness should not be confused with the idea of everyday �relevance�.  A tool 

can be considered useful if it allows students to solve problems with which they 

are confronted in a school environment.   

A student must first learn the mediational tool of mathematics in order to 

explore physics.  However, the application of that tool to physics gives 

mathematics new meaning and shows it to be useful.  Once found meaningful 

and useful, human nature leads the student to practice the use of that tool until it 

is mastered.  A physics course that promotes the use of mathematical tools to 

solve rich and interesting problems promotes the learning of both physics and 

mathematics. 

The everyday understandings that each student brings with them to the 

classroom are correct within their context.  It is not the role of science education 

to confront those beliefs and prove them wrong.  Science education must show 

students how their prior beliefs and understandings are particular outcomes of 

more general principals while showing the usefulness of those more general 

principles.   
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Problem solving is both an educational goal and an educational technique.  

The mediational tools that are employed in solving a problem are all supported in 

the process: they are given meaning, shown to be useful and are practiced.  

Thus problem solving is a means of helping students construct the mediational 

tools that are employed.  However, problem solving is also a highly regarded 

outcome in its own right.  The ability to think analytically and work through 

complex problems is valuable. 

If tools are to be generally applied, beyond the context in which they are 

learned, transfer must be promoted.  Transfer is very much improved when 

individuals are told that what they have learned in one setting will be useful in the 

new setting; when problems are isomorphic with one another; when the learners 

are motivated; and when the underlying reasoning behind the solution to the 

source problem is understood.   

Promoting transfer should be an objective of a school�s overall educational 

design: accomplishing this involves curriculum development stressing cross 

curricular articulations; professional development that stresses those 

connections; and a pedagogical approach that emphasizes reasoning.   
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Chapter 3: METHODOLOGY 

The implementation of the science program under study began with the 

founding of the school 6 ½ years ago.  Prior to the 1999/2000 academic year 

(AY2000) the facility housed a full time special education vocation school and a 

shared-time vocational school.  The full time school was phased in beginning 

with a 9th grade class that was inducted in AY2000 and graduated in AY2003.  

The first year for which SAT, HSPA and AP results are available is the year that 

those students reached the 11th grade, AY2002.  All of those data will be used in 

this study.  In addition, the implementation of the science program will be 

explained in detail from the founding of the school to the present. 

In my attempt to determine the effectiveness of the program, I establish 

two baselines for comparison.  First, I compare the students in the school to 

those in the state with respect to their demographic characteristics as well as 

their scores on Scholastic Assessment Tests (SAT�s).  This was to determine if 

the students in the school were sufficiently like those across the state to allow 

meaningful comparisons to be made between the two groups.   

Second, I compare the scores of the school�s students on the math and 

verbal SAT�s.  This was to determine if their mathematical and verbal aptitudes 

were sufficiently similar that their achievement in mathematics and science 

versus English and social studies could be meaningfully compared.  Since only 

student achievement in mathematics and science would be attributable to the 

program under study, differential achievement between mathematics and science 
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versus English and social studies would increase the plausibility that the program 

was responsible for any difference.  

I then describe the three measures I would use to determine the 

effectiveness of the program: student achievement on Advance Placement (AP) 

tests; student achievement on the state High School Proficiency Assessment 

(HSPA); and the participation rate in science electives.  I would be making 

comparisons both externally, to students across the state, and internally, to the 

same students� achievement outside of mathematics and science.  The process 

of how I planned to do this and the comparisons that would be made are 

described in this chapter. 

An important aspect of this study was also to document the program so 

that it could be replicated at other schools.  In this chapter, I describe the two 

basic approaches I would use to accomplish that documentation: a full 

description of the program in its current state, a snapshot, and a detailed 

explanation of the theoretical framework of the program.  

The Implementation of the New Science Program 

 It took six years for the new science program to reach its current form.  

There was no single date that it was implemented; it was a gradual, uneven 

process.  This is the reality of schools, where decisions are ideally made for the 

best interests of the students; not for research purposes.  Understanding the 

results that were obtained requires having a general picture of the process by 

with the program was implemented.  
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That process began with the launching of the school as a full time 

vocational/technical high school in September 1999 (AY2000).  The school 

started with about 120 students, of whom 82 went on to graduate.  There was a 

high attrition rate in the initial years due to the difficult process involved in 

recruiting qualified students to a new vocational high school.  Attrition rates have 

improved steadily and are now quite low, and usually attributable to a student�s 

family moving to another county.  The population now varies between 150 and 

180 students per grade. 

The new math and science sequences were originally developed for the 

Pre-Engineering program: one of more than a dozen programs in the school.  

Pre-Engineering was originally established to serve the needs of students who 

had not been accepted into the district�s magnet school, the Academies, but were 

considered academically above average.   Pre-Engineering started with 22 of the 

school�s original 120 students; 20 of whom were to eventually graduate.  In 

AY2006, Pre-Engineering had 22 of the school�s 150 9th grade students. 

The most rigorous math/science sequence was designed for students in that 

program: a program designed to prepare students to go on to college majors that 

require a high level of analytical ability.  While engineering represents one of 

those fields, students in this program also choose to go on to study medicine, 

law, etc.  In addition to their rigorous math and science courses, students in Pre-

Engineering take one or more Project Lead The Way (PLTW) engineering 

courses each year.  Pre-Engineering students represent about 10% of the 

school�s population.   
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The initial program design for Pre-Engineering called for its students to 

take a traditional science sequence, biology-chemistry-physics, and begin a 

traditional math sequence with geometry.  The belief was that these students 

would already have completed algebra and would be relatively advanced in 

terms of their academic abilities.  However, it turned out that only 6 of the 22 

students had studied any algebra prior to 9th grade.  To accommodate this reality, 

the decision was made to add algebra and physics to their 9th grade program, 

while retaining geometry and biology.  It was felt that the combination of physics 

and algebra would allow them to progress more quickly to the level that they 

would need to reach if they were to go on to engineering school.   

There were two hours per day reserved for their vocational/technical 

study.  These additional two subjects were taught in that block of time, along with 

an engineering course, Computer Aided Design.  However, the amount of time 

available for either Biology I or for Physics I was less than would normally be 

given either subject: they were each taught for about 180 minutes per week.  

This remained the 9th grade math and science program for Pre-Engineering 

students for the first three years of the program, from AY2000 to AY2003.   

During those years, the 10th grade science courses for Pre-Engineering 

students were Chemistry and Physics II and the 11th grade courses were Biology 

II and Chemistry II.  In addition, students had the option of taking AP science 

courses in their third and fourth years.  It was felt that Physics II, Chemistry II and 

Biology II were needed to bring these students up to the level required to 

succeed in engineering schools and on AP exams.   
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In AY2004, Biology I was moved to 11th grade, becoming Biology, and 

Physics I became the sole 9th grade science course.  This had a number of 

benefits: it had become clear that biology could be taught more effectively after 

students had finished a year of physics and of chemistry; the time gap between 

9th grade Biology I and 11th grade Biology II was counter productive; and more 

academic time was needed for other subjects in 9th grade.   

When Biology I moved to 11th grade, Biology II was eliminated as a 

course.  Students interested in studying additional biology were encouraged to 

take AP Biology in 12th grade and/or Anatomy and Physiology, in 11th or 12th 

grade, as electives.  Also, as we had gained more experience with the courses, it 

was found that interested students could take AP Chemistry directly after 

Chemistry I and that disinterested students did not profit from Chemistry II; so 

Chemistry II was eliminated. In AY2005, a successful experiment, replacing 

Physics II with AP Physics B for four 10th grade students, was conducted.  Based 

on that result, Physics II was eliminated in AY2006: interested students are now 

encouraged to take AP Physics as early as 10th grade.  This last change marked 

the end of all non-AP second year science courses. 

This brings us to the current AY2006 science sequence.  The current 

sequence requires all students take physics in 9th grade, chemistry in 10th grade 

and biology in 11th grade.  Students who get a B in any of those courses, or who 

get permission, are allowed to take the second year AP course in that subject.  

As of this writing, the 35 students taking AP Physics B in 10th grade seem to be 

doing at least as well as their 11th grade classmates, most of whom took Physics 
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II last year.  The full effect of the elimination of Physics II will not be felt for 2 ½ 

more years: at that point the current 10th grade students who are taking AP 

Physics B will be graduating.  It is expected that the current sequence will 

significantly improve their participation and performance on science and math AP 

exams. 

As the Pre-Engineering program evolved; we began applying what we had 

learned to the rest of our students.  Initially, in AY2000, the science sequence for 

the rest of the school was the traditional biology-chemistry-physics. However, as 

the benefits of teaching physics to the Pre-Engineering students in 9th grade 

became clear, we decided to try to obtain some of those benefits for the rest of 

the school.  In AY2002, we made physical science the 9th grade science for most 

of our students, with biology being moved to 11th grade.  This was extended to all 

students in AY2003.   

 In AY2003, students in the traditional vocational areas who had above 

average prior achievement in mathematics began studying Conceptual Physics 

instead of Physical Science; Conceptual Physics effectively becoming the 

Honors 9th grade science for traditional vocational students.  As a result, there 

were three levels of 9th grade science being taught in the school in AY2003 and 

AY2004: Physics I, Conceptual Physics and Physical Science.  Only Pre-

Engineering students were allowed to take Physics I as they were the only 

students with time in their schedules to take Physics II.   

In AY2005, we rewrote the curriculum for Physics I, renaming it Physics 

Honors, and made it available to all students with above average math 
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achievement.  One goal was to reduce the amount of tracking in the school.  The 

curriculum was revised so that that course could serve as the prerequisite to 

Physics II or as a standalone.  Also in AY2005, Physical Science was eliminated: 

when Physics Honors became the 9th grade honors science course for all 

students, Conceptual Physics became the standard course.  This change gave 

students a full year of each science, not ½ a year of physics and 1 ½ years of 

chemistry: this better balanced the time students studied each discipline and was 

preferred by both the physics and the chemistry teachers.  

In AY2006, Conceptual Physics, based on the Hewitt text, was eliminated 

and replaced by Physics, based on the same Giancoli text used in the honors 

course.  It was decided that students would gain more by learning the same 

material schoolwide than by learning different curricula from different texts.  The 

only difference between the two courses became the level of difficulty of the 

mathematics used: the honors course deals with more mathematically 

challenging problems.   

The evolution of the 9th grade science course is shown in the charts 

below.  For clarity only the physics course taken by the Pre-Engineering students 

in 9th grade is shown for the years where they took both biology and physics, 

AY2000-AY2003.  Also, the figures for Physics I and Physics Honors have been 

combined as Physics Honors. 
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Figure 1: Ninth grade science enrollment by course. 
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Figure 2: The percentage breakdown of ninth grade science enrollment by course. 

There has been debate about whether the small difference between 

Physics Honors and Physics is worth the price of segregating the students, 

especially since 83% of the students are now in the honors course.  Using a 

social constructivist approach, the weaker students might be better served by 

being integrated into the same classes as the stronger students.  As a result, 
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there is serious debate about having all 9th grade students take Physics Honors 

next year; eliminating tracking in first year science altogether.  This might well 

lead to eliminating tracking in the later years as well. 

There has been a positive student reaction to the Physics Honors course 

and a great interest in going on to study AP Physics.  When recently asked to 

sign up for the elective AP Physics B course, about 100 of the 125 students in 

Physics Honors asked to take AP Physics B along with Chemistry in their second 

year; only 22 of these students are in Pre-Engineering.  The only obstacle is that 

many of their vocational programs do not currently have the flexibility to 

accommodate students taking two science courses in 10th grade.  If this cannot 

be addressed, those students will have to wait until 11th grade and would need to 

choose between AP Physics and AP Chemistry. 

With the elimination of Physics II, Chemistry II and Biology II, the second 

year of study within any science became elective for Pre-Engineering students: 

students could fill that space in their schedule by electing to take an AP math or 

science course or additional engineering, computer programming or digital media 

courses.  On the other hand, students in other programs, such as Cosmetology, 

Automotive, Fashion Design, etc. were given the choice to take the Pre-

Engineering math/science sequence as well as any of the AP courses.   

One result of this is that students interested in AP courses may take them 

regardless of their choice of career major and those in Pre-Engineering are not 

required to take them at all: all AP courses serve as school-wide electives.  The 



 120

only exception to this open policy is due to the time conflict in 10th grade 

described above. 

Algebra and Geometry in 9th Grade 

The school�s 9th graders come from approximately 35 different middle 

schools.  Their transcripts indicate that some of them studied algebra and some 

studied pre-algebra in 8th grade.  Since there is no standard state-wide algebra 

curriculum or assessment, it is difficult to determine what students learned based 

on the titles of their 8th grade courses.  Since algebra is so critical for all 

subsequent study in math and science, all students are assessed on their prior 

algebra achievement before being allowed to move on to Geometry.  It has been 

found that more than 80% of entering 9th graders need to take Algebra or Algebra 

Honors in 9th grade, regardless of their 8th grade mathematics course. 

However, students need to take Geometry in 9th grade if they are to study 

Calculus in high school, a requirement for Pre-Engineering students.  As a result, 

Pre-Engineering students have been, and continue to be, required to take two 

mathematics courses in 9th grade, typically Algebra Honors and Geometry 

Honors.   

Beginning in AY2005, this option was made available to all 9th graders 

who had been placed in Algebra Honors, about 80% of those admitted, and 

about half of those students elected to take advantage of it.  This will better 

prepare them for AP Physics, if they elect to take it, and puts them on track to 

take Calculus in high school.  It also lowered one of the last remaining barriers 

between the Pre-Engineering program and the overall school. 
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The Demographic Composition of the School 

As described above, the setting for this study is a county-run suburban 

vocational/technical high school located near a major US city.  The school has a 

total population of about 650 students distributed approximately evenly between 

grades nine through twelve.  The school attracts students that are interested in a 

technical or vocational education:  they must be a resident of the county and 

apply to the school.  Their acceptance depends on their middle school academic 

results, their admissions test scores and the program to which they apply.   

The racial and gender composition of the school over the last five years is 

shown in Table 2, Table 3 and Figure 3.  While the percentage of whites and 

Hispanics has stayed constant, the Asian percentage of the school has risen 

about 65% during that period, from 11% to 18% while the black population has 

been reduced in half, from 13% to fewer than 6%.  During that same period the 

female percentage of the school increased from 38% to 45%.  Also during that 

period, the percentage of students who qualified for free or reduced lunch, based 

on their family income, dropped from 24% to 13%. 

AY2002 AY2003 AY2004 AY2005 AY2006

Asian 44 78 106 126 115
Black 49 56 55 42 34
Hispanic 94 122 137 152 148
White 200 265 290 325 335

Male 243 325 351 374 344
Female 144 196 237 271 288

Free/Reduced Lunch 93 112 95 99 84

Total 387 521 588 645 632  

Table 2: School enrollment by race, gender and lunch status. 
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AY2002 AY2003 AY2004 AY2005 AY2006

Asian 11.4% 15.0% 18.0% 19.5% 18.2%
Black 12.7% 10.7% 9.4% 6.5% 5.4%
Hispanic 24.3% 23.4% 23.3% 23.6% 23.4%
White 51.7% 50.9% 49.3% 50.4% 53.0%

Male 62.8% 62.4% 59.7% 58.0% 54.4%
Female 37.2% 37.6% 40.3% 42.0% 45.6%

Free/Reduced Lunch 24.0% 21.5% 16.2% 15.3% 13.3%

Total 100.0% 100.0% 100.0% 100.0% 100.0%  

Table 3: Percentage composition of the school by race, gender and lunch status 
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Figure 3: Racial composition of the school by year 
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Figure 4: Gender composition of the school by year 
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In Figure 5 and Table 4 the racial composition of the school is compared 

to that of the total student enrollments for the state and the county (NJDOE, 

2005) for AY2005.  Compared to the state, the most significant difference in the 

racial composition of the school is in the higher percentage of Hispanic and 

almost equally lower percentage of black students.  A similar offset is in the 

higher percentage of Asian students and the lower percentage of white students.  

The school also has a higher percentage of boys then girls and the state has a 

significantly higher percentage of students who qualify for free or reduced lunch, 

27% versus 15%. 

 Some of these differences may reflect the demographics of the county in 

which the school is located: as a county vocational school all the school�s 

students are drawn from the county and would be expected to reflect the county�s 

demographics.  This is the case in the percentage of black students and the 

percentage of students who qualify for free or reduced lunch: both of those 

figures are consistent between the school and the county.   The percentage of 

students who qualify for free or reduced lunch is much lower in the county than 

for the overall state: this probably reflects the higher cost of living in Bergen 

County. 

 The lower percentage of females in the school reflects the vocational 

programs that are offered.  However, that figure is moving towards balance and 

will end the current year at nearly 46%: very close to the county percentage for 

AY2005 of 48%.   
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AY2005 School County State

Asian 19.5% 14.6% 7.5%
Black 6.5% 6.7% 17.7%
Hispanic 23.6% 14.8% 17.7%
White 50.4% 63.9% 57.1%

Male 58.0% 52% 50%
Female 42.0% 48% 50%

Free/Reduced Lunch 15.3% 12.6% 27.4%

Total 100% 100.0% 100.0%  

Table 4: AY2005 racial and gender composition of the school and the state 
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Figure 5: AY2005 racial composition of the school, county and state. 

Overall, the school�s students were not very different from those in the state 

or the county: while not identical to either, it is likely that no school�s students are, 

they were not dissimilar in any significant ways.  For instance, the school�s 

student body was not comprised of an exceptionally high percentage of 

demographic groups that are relatively high or low achieving.  This proved 

important to the study as it allowed me to make meaningful comparisons 

between the performance of the school and the state: comparisons that would 

not have been meaningful if the demographic composition of the school were 

unusual.   
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However, there has been a change in the demographic composition of the 

school which will provide an alternative explanation of some of the results that 

will be discussed later.  Specifically, during the course of the school�s 

development there has been a marked reduction in its black population and 

commensurate increase in its Asian population.  So while the demographic 

composition of the school is not very different from that of the county, it does 

differ from that of the state and it does change from year to year.  In addition to 

examining the demographic composition of the school, it was also necessary to 

look at the academic aptitudes of the students 

The Academic Aptitude of the Students at the School 

While I showed above that the demographic composition of the school was 

not very unusual, that alone would not have made it reasonable to make 

comparisons between the school and the state.   Regardless of their 

demographic composition, it was possible that the students in the school were all 

academic superstars with Ivy League goals: that would have rendered 

meaningless any comparisons to the overall state.   

In order to determine if the academic aptitudes of the students in the school 

would rule them out for comparative purposes, I primarily used their results on 

the Scholastic Assessment Test (SAT).  While this is not a pure assessment of 

aptitude, it is as close to one as is available on a school and statewide basis.  To 

the extent that student achievement influences the results on the SAT; that would 

have inflated the apparent aptitude of high achieving students in the school and 

made them appear to have higher aptitude than would have been revealed by a 



 126

more pure measure.  In this sense, the SAT was a robust yardstick for use in this 

study as any conflation between aptitude and achievement would have reduced 

the apparent gap between them and thereby reduced the apparent effectiveness 

of the program: all errors in this regard would underestimate the effectiveness of 

the program. 

Another value in this measure was due to the availability of both math and 

verbal SAT scores.  As was argued above, I was able to use the students� 

performance on verbal assessments for comparative purposes since those would 

not have been affected by the math / science program under study.  The SAT 

proved valuable for showing that the verbal and mathematical abilities of the 

students were similar enough to make such comparisons valid.  

It is also important to understand the background and aspirations of the 

students in the school.  This is a vocational / technical school whose students 

must declare a major before being admitted: majors span a range from highly 

technical, requiring a strong foundation in science and mathematics, to traditional 

vocational.  The courses unique to each student�s program comprise about 25% 

of their time in school.  In the past, the students� choice of program determined 

not only their unique vocational courses, but also the rigor of their academic 

courses; however, the school has been evolving away from making that 

connection. 

A sister school in the same district serves as a county magnet school for the 

highest achieving students in mathematics, science and engineering.  As a 

result, the students in the school under study, while having achieved above 
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average results in middle school, are not exceptional with respect to their prior 

interest or achievement in mathematics and science: students who were deemed 

exceptional in those respects attend the magnet school.  In that sense, one 

would expect that this school would not be fertile ground for science and 

mathematics achievement.  Also, vocational schools are not traditionally strong in 

their academic performance.  However, it is possible that students considering 

careers in some of the vocations, such as automotive mechanics, electrical or 

computer science might be more attracted to science and mathematics than to 

English and social studies.  This might or might not be offset by those majoring in 

cosmetology, fashion design and culinary.   

That the students� mathematical and verbal aptitudes are not exceptional 

when compared to students across the state is seen in the data for their SAT 

results (see Table 5, Figure 6 and Figure 7).  Over the three years of available 

data the students ranged from being just below to just above the state average 

with respect to this measure.  This is important in that it made achievement 

comparisons between the school and the state meaningful: achievement 

comparisons between populations with significantly different aptitudes would 

have had questionable value.  

While there has been a small upwards trend in SAT performance from 

AY2003 to the AY2005; this result was not directly attributable to the program 

under study.  If it were, there would have been different rates of improvement 

between student performance on the math and verbal SAT�s: the connection of  
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this program to mathematical skill being much stronger than it is to verbal skill.  

However, the growth rate was almost the same: the average Math SAT (see 

Figure 6) improved from 496 to 531; the average Verbal SAT (see Figure 7) 

improved from 480 to 510; this represented improvements of 35 points and 30 

points, very similar.  During those same years the state average for those tests 

remained effectively flat; improving from 518 to 519 in mathematics; and from 

499 to 501 on the verbal test.   

The improvement in these data is more reasonably attributed to the growth 

in the school�s reputation; thereby its ability to attract stronger students.  It is 

important to keep in mind that these data represents different cohorts of 

students.  Thus changes in SAT scores do not represent improvements within a 

given group of students, but rather, the results of a new group of students each 

year.  Whether these new students were either attracted by the new program or 

in some way benefited from it while they were in their early grades could not be 

determined from the available data. 

More importantly for my purposes, the amount of growth simply brought the 

average performance of the population of this school to just above the state 

average: about 10 points above the state average for performance and about 

12% above in terms of the rate of participation on the SAT.  This will represent a 

small effect relative to the achievement data that will be analyzed in this study.  

(While not directly relevant to this study, it is possible that the increased 

participation rate on the SAT�s was an indirect benefit of the program under 
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study: success in mathematics and science could have affected student interest 

in going on to college.) 

Also, it is important to note that the relative performance of the students in 

terms of their math and verbal ability was very comparable.  They did about as 

well in terms of their relative verbal performance, compared to the state average, 

as they did in their mathematical performance.  (By AY2005 the students in the 

school were about 9 points above the state in verbal score and 12 points above 

the state in mathematics.)  This allowed me to examine differences in 

achievement between areas closely associated with verbal aptitude (i.e. English 

and social studies) and those associated with aptitude in mathematics (i.e. 

science and mathematics).  Whatever small advantage the students of this 

school had in aptitude is the same with respect to both their verbal and 

mathematical aptitudes.  

There are three important conclusions that can be seen in these data: the 

aptitude of the school population, as measured by SAT achievement, rose from 

being slightly below the state average to slightly above it during those three 

years; that improvement was relatively the same for both math and verbal; the 

students� verbal and math aptitudes were comparable to one another when 

compared to the state.   
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# % Average Average
AY2005 25th 50th 75th 25th 50th 75th
School 126 84% 531 430 530 630 510 430 510 580
State 64612 75% 519 430 520 600 501 420 500 580

AY2004
School 90 58% 503 420 490 560 484 420 470 550
State 60936 73% 516 446 515 586 499 432 498 566

AY2003
School 55 53% 496 420 500 570 480 430 480 530
State 60196 75% 518 448 518 589 499 433 499 566

Scholastic Assessment Test (SAT) Results

Percentile Percentile

Students Taking 
Test Mathematics Verbal

 

Table 5: School and State SAT Results 
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Figure 6: Average math SAT scores for the school and New Jersey. 
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Figure 7: Average verbal SAT scores for school and New Jersey. 
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It is always difficult to experimentally evaluate programs that have evolved 

in real-world situations.  As a result, there will be limitations on the conclusions 

that can be drawn from any analysis.  In this case, I was able to take advantage 

of three happy accidents: the school�s students were very near the state average 

in terms of their SAT performance; their math and verbal aptitude were very 

similar to one another; the English/Social Studies program was relatively 

traditional and independent of the math/science program.  This information was 

used to establish two baselines for comparative purposes: I was able to compare 

interdepartmental performance within the school using English and social studies 

as a baseline and I was able to compare the school�s performance to that of the 

overall state.   

These baselines were also used to support each other in order to generate 

robust results.  For example, in one analysis I first normalized the AP 

achievement of the school, to that of the state, by course and by department.  I 

then compared that normalized achievement data, by department, within the 

school; effectively combining both external and internal data for comparison.  

While certainly not experimentally rigorous, these comparisons allowed me to 

probe the performance of the school by subject area in great detail: these 

differences in student performance by subject area being critical to this study.  I 

was able to determine if student achievement in science and mathematics was 

different than in other subjects: a finding that would be a measure of the 

effectiveness of the program.   
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Documentation and Analysis 

The documentation of the program involved four components.   

• The documentation of the science/mathematics sequence; comparison to 

traditional sequences; and the rationale for the differences;  

• The curricula for the 9th and 10th grade physics courses and the rationale 

for the differences from traditional curricula;  

• An excerpt from a chapter of a textbook, currently being written, that 

mirrors the approach of the ninth grade physics course; and the 

comparison of its approach to some popular textbooks and the rationale 

for the differences; 

• The description of the six year implementation process of the science 

sequence. 

AP Data and Analysis 

 I used three types of data for analysis: the results on Advanced Placement 

(AP) exams, the results on the New Jersey High School Proficiency 

Assessments (HSPA�s) and the participation rates of students in science 

electives. Statewide detailed information is available for both AP and HSPA 

performance; allowing me to compare the performance of the school to that of 

the state.  Participation in science electives would serve as a proxy for student 

interest in science. 

A key objective of this program was to increase participation and 

performance on both AP math and science exams.  To determine if that had 

been achieved, I used the results for the overall state of New Jersey as a 
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baseline for comparison purposes.  This was done in four ways.  The first three 

comparisons were done using traditional measures: normalized participation 

rates, passing rates (scores of 3 or better) and average test scores.  However, as 

I will discuss below, those methods are fundamentally flawed: I propose an 

additional new measure, which I refer to as the AP Metric, which addresses 

those flaws. 

The problem with comparing participation rates alone is that no weight is 

given to student performance: schools can improve this result simply by getting 

students to take the exam, regardless of the effectiveness of their preparation.  

The problem with examining the average scores alone is the mirror image of the 

problem with participation rates: schools can improve this result simply by 

restricting access to the AP exam.  By having only the school�s top student take 

the exam the school�s average score is maximized.  The number of students 

passing is the best balance between these two, but still suffers from students 

being discouraged from taking the test if they are deemed unlikely to pass it. 

The proposed the AP Metric, described below, provides a balance 

between participation and performance.  It achieves the balance in the following 

manner: add together the AP scores of all the students and divide by the number 

of graduating seniors.  All students who take an AP exam earn a minimum score 

of one while non-participants effectively get a score of zero.  Thus, increasing AP 

participation yields a higher score on this metric. However, a score of five have 

five times the value as compared to a score of one, increasing the performance 

of participants also increases the overall score.   
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Dividing by the total number of graduating seniors also normalizes the 

data so that comparisons can be made with other schools; the overall state; or 

even between states and regions.  This metric can be calculated by individual 

course; department; school; or state.  As a result, this metric yields a normalized 

weighted measure of AP participation and performance that can be applied at 

any level of detail. 

Statewide data are publicly available for the total scores earned on each 

AP exam and the number of graduating seniors.  Therefore, I was able to use 

this metric to create a baseline for the state and then compare it with the school�s 

performance.  Through that comparison I could determine the relative 

performance of the school by subject area.  This gave me an indication of 

whether those subjects in which the new program for science and mathematics 

had been implemented showed differential achievement gains relative to other 

subjects, such as English and social studies, where such a program is just 

commencing.  Also, since all these data were available from the inception of the 

program until the present, I could examine and analyze the trends. 

HSPA Data and Analysis 

Another measure of math achievement used in this study was student 

performance on required state tests.  The math and English High School 

Proficiency Assessments (HSPA) are given to all New Jersey students in the 11th 

grade.  Students are categorized as being either Partially Proficient (a nice way 

of saying not proficient), Proficient, or Advanced Proficient.  These results are 
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published for all schools and for the total state: they represent a comparative 

measure of achievement in these areas.   

It would have been theoretically possible to apply a value added model to 

evaluate the effectiveness of the school�s programs if individual student data 

were tracked from school to school so as to allow a comparison of performance 

on the 11th grade HSPA to the 8th grade test GEPA.  However, that was difficult 

to do in this case as the school�s students come from 35 different middle schools 

and the state does not track data by student.  (As the state is now in the process 

of computerizing their test data an analysis of this type should be possible in the 

future and would be valuable to do at that time.) 

In this study, I was able to do an analysis of the overall HSPA results by 

assuming that the students in the school were, on average, comparable to those 

in the state.  As was discussed above, the SAT scores of the students in this 

school are approximately the same as those of students across the state; 

implying that the student population is not exceptional.  While it is true that the 

very fact that they came to the school results in a selection bias, I was able use a 

comparison between trends on the math and English HSPA to effectively use 

English as a control for the math results.  However, while this analysis would 

reveal differences in performance by department, it could not attribute the causes 

for those differences   This will be discussed further below. 

Participation in Science Electives 

I used participation rates in science electives as a measure of the value 

the school�s students place on the study of science: an effective science program 
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should result in an increase in its apparent value to students.  What courses, that 

are above and beyond what is required of them, students choose to take may 

indicate either their interest in the material or their belief that it is important.  

While participation rates alone cannot determine which of these two factors is 

motivating students, it does measure their combined effect: reflecting the value 

students place on the study of science. 

I only included science courses that were not required by either the school 

or the student�s program of study when doing this analysis.  I divided the total 

enrollment in science electives by the number of graduating seniors to arrive at 

the participation rate.  While not indicating the actual electives taken by seniors 

graduating that year, this did indicate the current participation in science electives 

normalized to the number of graduating seniors. 

Using this approach gave greater weight to students taking three electives 

than to students taking one.  This had the benefit of weighting student 

participation but did not give a measure of the total number of students who took 

a given number of electives: zero, one, two, three, etc.  

Since most science electives are AP courses, this measure results in 

double counting AP courses in that they appear both within this measure as well 

as within the figures for AP participation.  While this represents a conflation of 

those two measures, excluding AP science courses would be a less reasonable 

approach since students can only be expected to take a limited number of 

science course in a given year: if they choose to take an AP science elective they 



 137

will not have the time in their schedule to take a non-AP science elective.  This 

limitation should be kept in mind when examining these data. 

Another limitation is that while I am using this as a measure of the value 

that students place on science, it also reflects the judgments of their parents, 

guidance counselors, friends, etc.  It is not possible to certain why a student 

takes one course or another.  Also, it might represent a paucity of non-science 

electives. 

Summary 

 The students in this school were not very different from those in the overall 

state from the perspective of both their aptitude and their demographic 

composition: it is reasonable to compare the academic achievement of the 

school to that of the state.  The students in this school were also not very 

different in terms of their mathematical and verbal aptitude: it is reasonable to 

compare their achievement in science & mathematics to their achievement in 

other subjects, such as English and social studies. 

 Three separate measures were used to determine the students� interest 

and achievement in mathematics and science: AP results, HSPA results and 

participation rates in science electives.  I was able to use a combination of these 

three measures to make comparisons to the state and to the school�s 

performance in other subjects to determine the effectiveness of the program. 

 Based on the effectiveness of the program it was expected that other 

schools might choose to adopt it.  To facilitate this, the program was documented 

both with respect to its current state as well as its rationale.   
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CHAPTER 4: RESULTS 

The first three research questions will be answered in the first six sections 

of this chapter.  These are the questions that involve the description, 

documentation and analysis of the science program at the site: 

1. What is the new science scope and sequence and how is it unique? 

2. What are the new physics curricula and how are they unique? 

3. What is algebra-based physics and how is it unique? 

The answers to these research questions serve two roles: to determine if the 

predicate of the hypothesis is satisfied by this program and to describe the 

program in sufficient detail that interested schools could replicate it.   

 The final three research questions are answered to the succeeding three 

sections: 

4. How does the AP performance of the students in this program 

compare to that of students in other New Jersey schools?   

5. How does the HSPA performance of the students in this program 

compare to that of students in other New Jersey schools and to their 

English HSPA performance? 

6. What are the trends in the participation rate in science electives?� 

The answers to these questions serve a different role than the first three: they 

serve to determine if the predicted outcome has occurred and, therefore, if the 

hypothesis has been supported.  This would be straightforward if the sole 

purpose of answering these questions was to simply describe the outcomes.  
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However, a purpose of this study is to try to determine the answers to these three 

questions and the implications of those answers with regard to the hypothesis.   

This is problematic since it is difficult to ascribe causality in any complex 

situation; there will always be alternative explanations that might be the cause of 

the observed outcomes rather than that which is supposed in the hypothesis.  

The proposed and the alternative explanations will gain or lose in plausibility to 

the extent that they are consistent with answers obtained to these final three 

research questions.  However, the answers to these questions will not be 

sufficient to categorically determine whether only one explanation is reasonable; 

that will require future research. 

 For the sake of clarity I will posit several alternative explanations at the 

outset of this chapter and, in each section where the results are discussed with 

regard to the hypothesis; the alternative explanation will be considered as well.  

This will serve to remind us of the limitations of the study.  It will also lead to 

proposed future research that could differentiate between the various 

explanations.   The implications of the range of possible explanations and future 

research will then be further explored more globally in the chapter five.   

• AE1. The growth in the Asian population of the school could account for 

improvements in performance in mathematics and science achievement 

as this demographic group has historically performed well in these 

disciplines. 
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• AE2.  The differential performance between science and mathematics 

versus English and social studies could be accounted for by the growth in 

the Asian and Hispanic population.  Both these groups have a higher 

proportion of students that speak English as a second language and may 

have weaker performance in subjects that require English language skills. 

• AE3.  Outside factors in the community or internal factors, such as the 

influence of guidance counselors, etc. could be playing a role. 

• AE4.  Apparently high performance in mathematics and science as 

compared to English and social studies could reflect weakness in the 

English and social studies programs and/or the faculty in those 

departments rather than strengths in the science and mathematics 

program.     

• AE5.  The performance of the mathematics and science program might be 

due to other strengths in those programs, not related to the hypothesis, or 

it could be due to the strength of the science and math faculty. 

• AE6.  As a vocational / technical school, this site could be particularly 

fertile for mathematics and science and the opposite might be the case for 

English and social studies. 

An Overview of the Science Program 

The new science program is comprised of nine courses: three first-year 

courses, in physics, chemistry and biology, three honors-level courses in those 

subjects, and three second-year courses that culminate in the AP exam for that 
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subject.  The first-year courses can serve as either standalone courses or the 

first half of a two-year AP sequence.   

This was accomplished by making the first-year course objectives a 

subset of the AP curriculum�s objectives.  (The key differences between the 

regular and honors level courses are the speed at which new material is 

introduced and the mathematical depth to which it is studied.)  Most students 

who want to go on to take the AP course in the second year are allowed to do 

that.  They are automatically admitted if they attain at least a B in the honors 

course or an A in the standard course.  Even if they do not have those grades, 

they can get permission if they express a strong interest and a willingness to 

make an extraordinary effort.   

If students do not want to take the AP course, they still benefit from the 

challenging first-year course: they are prepared for further study in college or 

university.  While every introductory university course is unique, the AP course is 

constructed to reflect a broad survey of first year courses taught across the 

country.  While this certainly does not mean that it is the best course, if it were it 

could not also represent a typical course; however, it does represent a target for 

what a student might encounter upon entering a random American college or 

university.  Therefore, the same first-year high school physics course that 

prepares students for the AP course should also prepare them for the typical 

introductory course at an undesignated college. 

Whenever more than one section of a course is offered, more than one 

teacher is assigned to teach it.  While this increases the number of different 
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courses for which each teacher must prepare, it also creates a team of 

collaborative teachers who work together on updating curriculum materials as 

well as sharing what has proven effective in teaching with that material.  Often, 

teachers are responsible for a section of the first-year course and the subsequent 

AP course, giving them a sense of direction for the combined two-year sequence. 

The teachers for each course work together to design common summative 

assessments (unit tests, midterms and finals); worksheets: formative 

assessments: lab activities: etc.  For the most part, summative assessments are 

all given on the same day school-wide.  This set of common summative 

assessments, assessment dates and curricular materials results in greater 

efficiency; gives students a sense that there is a purpose and direction to their 

studies; allows students to study together and tutor one another, regardless of 

teacher; increases student and teacher morale; and, thereby, improved student 

achievement.  By assuring that each student has the same high level of 

preparation, the goal of maximizing the number of students who go on to take the 

AP course, and then successfully take the AP exam, is achieved.   

The New Science Sequence 

Answering the first research question requires a detailed description of the 

new science scope and sequence.  A key element of the new science program is 

the reordered science sequence: physics is taught in ninth grade instead of 

biology; biology is taught in eleventh grade; and chemistry remains the tenth 

grade science.  While this new sequence, and the course curriculum changes 
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that follow from it, are in the sciences, a key goal of this approach is to benefit 

mathematics education as much as science education. 
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Figure 8: The new scope and sequence. 

This sequence uses each science to scaffold the understanding of the 

next.  Physics establishes the basis for chemistry while, together, physics and 

chemistry build a foundation for biology.  This bottom-up approach allows each 

science to be taught in a manner that stresses reasoning over description and 

memorization.  Implementing this approach requires each curriculum to be 

rewritten to take full advantage of the foundation that has been established the 

prior year. 

A key objection to this approach is that ninth grade students do not have 

the mathematical background to learn physics.  One solution would be to teach 

physics in a conceptual rather than a mathematical manner: however, this would 

eliminate the mathematical foundation of physics.  Mathematics is as much a 

foundation to physics as physics is to chemistry and chemistry is to biology.  To 
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achieve the full benefit of this reordering, mathematics must be used to establish 

the basis of physics. 

However, that mathematical foundation can be established through 

algebra alone.  Algebra is commonly taught to ninth grade students and, 

increasingly, to students in Middle School.  While mathematically oriented 

physics books use trigonometry, which is rarely understood by ninth grade 

students, the use of trigonometry is not essential to the goal of establishing the 

mathematical foundation of physics.  It is associated strongly with first-year 

physics only because eleventh grade students, who were taught physics in the 

old sequence, had already mastered it anyway and, as a result, that is how 

textbooks and curricula have been written.  

At the same time that algebra is establishing the foundation for physics: 

physics is the ideal setting for students to improve their mathematics.  First, 

students double the number of hours spent each week practicing mathematics.  

Second, physics demonstrates to students the usefulness of mathematics, both 

in terms of being able to solve physics problems as well as the real-world 

applications described in those problems.  Third, real-life applications of algebra 

to the solving of physics problems give mathematics a context and thereby 

increase its meaningfulness to students, making it less abstract. 

Analysis of Curriculum Articulations 

Understanding the articulations between the courses in the new science 

scope and sequence is also related to the first research question.  The 

connections between courses are critical to the success of any school-wide 
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curriculum: those connections are illustrated in the following diagram.  An arrow 

connecting two courses shows that what is learned in the first course is used in 

the target course.  A double headed arrow shows that the learning in each 

course is applied in the other.  It is important to keep in mind that applying what 

is learned in one course actually benefits both.  The usefulness of that learning, 

as it is applied in the second course, actually gives it additional meaning; makes 

its usefulness clear; and gives students an opportunity to practice.  So, while the 

target course clearly benefits by the prerequisite knowledge which the student 

brings with them from the first course, the first course benefits as well.   

Physics Biology

Algebra AP
Physics

AP
Chem

AP Bio

MA I MA II AP CalcGeom.

Chem

 

 

Figure 9: The curriculum articulations of the new scope and sequence. 

This diagram makes clear the web of connections that are made between 

each of the sciences and between science and mathematics.  These connections 
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take a variety of forms which may be ascribed to the categories of factual / 

conceptual, procedural, process and metacognitive.  

Factual / conceptual connections take the form of specific knowledge 

that is learned in one course and used in another.  For instance, a number of the 

concepts learned in 9th grade physics are prerequisite for understanding 

chemistry: energy; atomic structure; force; electric force; etc.  Similarly, much of 

what is taught in chemistry and physics is required for biology.  Modern biology is 

based on an understanding of the physical world.  Without an understanding of 

chemistry, energy, and electric forces; a cell makes no sense; and the cell is the 

basis of modern biology.  As was discussed in chapter one, the flow of  scientific 

knowledge is consistent with the arrows shown in the above diagram (Haber-

Schaim, 1984).    

Procedural connections represent instances where a specific procedure 

that is learned in one course is used in another.  Examples from 9th grade 

algebra include solving linear equations; graphing; scientific notation; graphical 

analysis; etc.  These are taught in algebra and then used extensively in physics 

and, to some extent, geometry, giving students a chance to practice what they 

have learned and reinforcing its usefulness: supporting the learning of algebra.  

They are then used in subsequent and parallel mathematics and science 

courses.  

Process involves the variety of ways that students learn to explore the 

world: inquiry; large group problem solving; small group problem solving; 

hypothetico-deductive thinking; etc.  These are taught extensively in the ninth 
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grade physics course and represent a major goal of that course.  These process 

skills are then used extensively in the science and mathematics courses. 

Metacognitive relates to learning about the process of thinking and 

learning.  This is strongly emphasized in the ninth grade physics course as 

complex multi-step problems are solved: problems that involve a great deal of 

reading and understanding prior to employing procedures.  For instance, 

students are taught how to read problems at least three times: one time to get a 

general understanding of the problem�s structure; a second time to identify and 

record pertinent information and develop a strategy; and a third time after its 

been solved to see if the question has been answered and if the answer is 

reasonable.  They are taught how to monitor their deployment of problem-solving 

strategies to make sure that they are self-consistent and consistent with their 

goals.  The skills of metacognition are useful in all their other courses. 

The arrows in the diagram above indicate this logical flow of concepts 

between the different subjects.  The flow between the sciences does not exist in 

the reverse direction.  It has been shown by the analysis of Haber-Schaim 

(1984)that there is little learned in biology that is prerequisite to chemistry or 

physics and similarly there is little learned in chemistry that is prerequisite to 

physics.  Also, there is no connection between a 9th grade biology course and 

mathematics.  

 As a result, the web of connections is very much reduced in a traditional 

scope and sequence; even one that is considered rigorous.  Also, in a traditional 

sequence any connections that are made are delayed until the student�s later 
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years; after they have been tracked towards or away from math and science.  

This is shown below for purposes of contrast.  Note the lack of connections 

between the science courses and that the connections to algebra are not made 

until after 9th grade, too late for many students. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: The curriculum articulations of a rigorous traditional scope and sequence. 

In the case of this �rigorous� curriculum the connections between science 

and mathematics are both much reduced and are made after 9th grade.  By the 

end of 9th grade, most students will have been tracked into one sequence or 

another, so the benefits of imparting meaning to the mathematics due to the 

science courses will come too late.  While the addition of an AP Biology course in 

the fourth year will improve the number of connections; these are established 

very late in the sequence and those connections, especially between Biology and 

AP Biology will be tenuous.  Adding AP Physics as a fourth year science will 
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create stronger connections, due to the more recent teaching of Physics, but 

many students will already consider physics to be �hard� due to the weak 

mathematical foundations established in their early years.  Only those already 

pre-selected as �strong� math or science students are likely to view AP Physics 

as a viable option. 

 A much worse, and much more common example, of the problems due to 

a traditional science sequence can be seen in the below diagram.  Students who 

are identified as �weak� in math are often given just two science courses.  The 

first year course is Biology, Earth Science or Physical Science.  While the last of 

these would be better than the former, it is usually taught in a relatively non-

mathematical manner, decreasing its potential benefit.  Aside from the lack of 

science in this sequence, this approach leaves mathematics very much 

weakened.  There is very little opportunity to apply what is learned in 

mathematics in another context.  The students who would perhaps gain the most 

from the new sequence are those with the weakest math skills at the beginning of 

9th grade.  Those are the same students who probably gain the least from the 

minimal version of the traditional sequence. 
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Figure 11: The curriculum articulations of a minimal traditional scope and sequence. 

In contrast, even in the minimal version of the new sequence, shown 

below, there are a strong set of connections between the sciences and between 

math and science.  Importantly, that web of connections is strongest in the 9th 

and 10th grades, before students are tracked away from mathematics and 

science.  This set of connections is critical for students who have not seen the 

importance of math and science prior to reaching high school.  This is an 

important opportunity to have the meaning and usefulness of those disciplines 

made clear to them; while all their future options in math and science are still 

open. 
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Figure 12: The curriculum articulations of a new minimal scope and sequence. 

 The benefits of this approach should be most visible among groups who 

have typically been underrepresented in math and science: minorities and 

women.  These groups are more likely to have been steered away from math and 

science prior to their arrival in high school.  A program that minimizes tracking 

and gives all students a solid foundation will benefit most those who are least 

likely to have been given that foundation in their earlier years.  

 Importantly, there is little difference between the least and most rigorous 

version of the new science sequence in 9th grade; only the second math course.  

As a result, any students that do find a new interest in math or science, due to 

taking those 9th grade courses, can participate in the most rigorous science 

sequence; the only obstacle they will need to overcome is learning the basic 

trigonometric functions on their own or after school.  In general, this approach 
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leaves all the students �in the game� a year longer; giving them a chance to find 

their interest in math and science. 

Implementing this approach required rewriting the curriculum of each 

course.  For example, there are no physics texts, or curricula, that use an 

algebra-based approach: they are either non-mathematical or require 

trigonometry.   Neither approach would be effective for the ninth-grade physics 

course.  A second example is that biology is taught very differently to students 

who have a background in physics and chemistry than to ninth-graders who have 

no such background.  However, in this case, biology texts and curriculum exist in 

the form of the AP curriculum and supporting texts.  

The 9th Grade Physics Course 

 The second and third research questions directly relate to the physics 

curricula.  While appendixes A and B directly answer that question by providing 

those curricula, a more in depth understanding of the 9th grade physics 

curriculum is provided in this section.  This course is the keystone to the new 

science/math program: without it the program could not stand.  It serves as the 

foundation for all the science courses that follow while providing the context 

within which meaning, usefulness and practice are provided to mathematics.  It is 

uniquely structured with the aims of promoting transfer between algebra and 

physics; creating a foundation for chemistry; creating a foundation for AP Physics 

B; and developing problem solving skills.   

 This is accomplished by using a social constructivist approach that takes 

advantage of the flat playing field offered by physics.  While prior student 
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achievement in mathematics varies, none of the students have previously studied 

physics.  Since the mathematics used in the physics course is restricted to 

algebra, it is within the reach of all students.  It is the case that some students 

have a stronger background in algebra than others: some have even placed out 

of Algebra and into Math Analysis I.  On the one hand, that does not give those 

students a direct advantage, since only algebra is used in the physics course: on 

the other hand, their stronger background in mathematics puts them in a position 

to help those students who are weaker in mathematics.   

The three pillars upon which the course is built are inquiry, hypothetico-

deductive reasoning and problem solving.  Inquiry is used to construct new 

concepts; hypethetico-deductive reasoning is used to develop the practical 

consequences of those concepts and test them; and problem solving is used to 

explore and practice the use of those concepts in a range of theoretical 

problems.   

Maintaining a proper balance between these three pedagogical 

approaches is critical to the success of the course.  Once a new concept is 

constructed and given meaning it must be shown to be useful or it will seem 

isolated and irrelevant.  Once shown to be useful: it must be practiced.  Once a 

concept is firmly established, it must be used in building the next concept: 

providing a foundation for the new concept while having its own usefulness 

reinforced in the process.  The knowledge that students construct leads to new 

knowledge; dead-ends are eliminated; learning is made useful. 
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Inquiry and hypethetico-deductive thinking can take many forms in the 

course depending very much on the concept being developed and how directly 

connected it is to prior understanding.  If the new concept simply represents an 

extension of prior learning being applied in a new context, or combined with a 

new piece of information, it might be done by posing a question to the class and 

reasoning to a conclusion through dialogue, a process that could be 

accomplished in just a portion of a 40 minute class.  In other cases, it might 

require a full class period, or even an 80 minute lab period.  Let us consider a 

case where the students have recently developed the kinematics equations.   

At the beginning of a subsequent double period lab class the teacher 

might briefly tell the story of Aristotle�s idea that objects fall at a constant velocity 

versus Galileo�s idea that objects fall with a constant acceleration.  A description 

of Galileo�s inclined plane experiment setup would then lead to a discussion of 

the different predictions that would be made for that experiment by applying 

Galileo�s theory versus Aristotle�s: the shape of the graphs that would result and 

their implications.  This would draw on the understanding that the students had 

developed with regard to both kinematics and graphical analysis. 

The students would then do the experiment; make the graphs; and reach 

their own conclusions.  While they would not have a sufficient understanding of 

trigonometry to use their data to derive the value of g as 9.8 m/s2, they would be 

able to show that a cart constantly accelerates as it rolls down an inclined plane.  

This is a big conceptual step, but is directly linked to their prior learning of 
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kinematics: without that prior learning this experiment would have no meaning.  

This approach is similar to the ISLE cycle of Etkina and Van Heuvelen (2001). 

In the next class, the teacher might provide the value of g; drop a pencil 

from a height of 1.0 m; then ask the class how long it was in the air.  Although 

there are no new concepts required; solving this problem requires transferring 

their prior learning of kinematics to a new type of problem, falling objects.  This 

task would typically start a very active set of discussions and work by the 

students.  The toughest job for the teacher is to keep out of it; not tell the 

students how to solve it; let them figure out how they could use what they have 

learned before.  This single problem might occupy much of a class period. 

In other cases, a class period might be used to apply prior learning to 

solve new, more complicated, problems.  For instance, if students have been 

previously learned to solve problems involving an object being pulled across a 

frictionless surface by a second hanging object; and more recently they have 

learned how to determine the frictional force acting on an object being pulled 

along a surface; they might use a class period to combine those ideas in order to 

solve problems involving a hanging object pulling a second object across a plane 

where friction is a factor.  This does not represent a new concept; but it does 

represent a challenging problem that engages students and reinforces prior 

learning.  

Beginning a completely new subject requires an even more extensive 

introduction.  For instance, when beginning the topic of electric charge and force, 

a more open-ended inquiry lab might be done where students probe the forces of 
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attraction or repulsion that exist between different materials: rubbed glass rods 

with rubbed glass rods; rubbed glass rods with rubbed plastic rods; rubbed 

plastic rods with rubbed plastic rods; rubbed glass with aluminum cans; etc.  This 

initial work towards the construction of a new concept would occupy a full double 

period lab: the class would need to construct a range of fundamental ideas 

before they can be used to solve problems.   

Once a new idea has been constructed; problems using that new concept 

are worked through.  The teacher may show what type of questions can be 

answered using this new concept and work through a couple of examples.  The 

teacher would then pose similar problems to the class and they would work 

through them together.  In this case, the class would work together as a large 

group, with the teacher as moderator and recorder, for about ten to fifteen 

minutes in order to solve two or three variations on that type of problem: the 

students would contribute all the steps.  Every student would contribute a step to 

solving a problem once or twice each day in this setting.  In a class of twenty, 

that means that the class make about 20 to 40 contributions to solving a problem 

over a time of less than fifteen minutes, a relatively fast pace.  This keeps the 

class fast moving and all the students involved.  Alternative methods of solving 

the problems might also be volunteered by the students or teacher in this setting. 

The students would then spend the remaining fifteen to twenty minutes of 

the class solving problems in small groups of threes or fours.  This is very 

consistent with the approach described by Heller (Heller, Keith, & Anderson, 

1992); (Heller & Hollabaugh, 1992).  The students sit at round tables and are 



 157

given worksheets with problems that are designed to escalate in difficulty.  They 

quickly reach problems which require them to consult together.  The first part of 

the class allowed them to construct some basic understanding, skill and context.  

The latter part of the class uses what was learned and builds on it to get the 

students into their Zone of Proximal Development (ZPD) for the maximum 

amount of time: this is where the development of the student should be most 

effectively accomplished.   

The teacher monitors student progress and encourages students to work 

together around their own table or consult with other tables as needed.  The 

teacher�s primary role during this process is to work with the students just 

enough to keep them in their ZPD.  This is an art: the teacher must have a sense 

of the class dynamic in order to offer just enough help and advice to keep them 

moving forward, but not so much as to eliminate the challenge.  If progress is too 

slow, frustration will take them out of their ZPD: if progress is too rapid, they will 

not be advancing their development.  The students� struggle to solve problems is 

critical to their learning.  But if they give up the struggle, due to frustration, 

nothing is gained: the teacher�s job is to intrigue them with hints; encourage them 

with praise; and cajole them to continue struggling until they achieve the success 

that everyone in the room must believe is within reach, but just barely. 

This is a relatively noisy environments with students actively engaged at 

the limits of their ability.  Once a student has completed all the problems, that 

student puts the first one on the board so that the class can agree on whether it 

is correct.  Although the students cooperate in solving many of the problems, 
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there are typically students who both provide their peers with the most help and 

finish most quickly.  This continues until all the problem solutions have been 

shared and agreed upon.  No student puts more than one problem on the board.   

 A set of problems of similar difficulty represents their homework.   While 

they are free to work on these either together or alone, they should have 

developed the skills, during class, to solve them by themselves at home.  

Homework is for the benefit of the students and is reviewed only at their request 

the next day.  

By working together in groups to solve problems, the students learn 

physics together while teaching each other a deeper understanding of algebra.  

Both those who begin the year weaker in mathematics and those who are 

stronger benefit, but the benefit takes different form.  Those who are stronger 

gain by the opportunity to practice and explain while those who begin the year 

weaker gain by being tutored and by seeing the meaning and usefulness of 

mathematics.  By establishing an environment where students can learn together 

and teach each other physics, while making use of their different relative 

strengths in mathematics, all students learn physics and improve their ability in 

mathematics.  

A crucial element is the creation of an open atmosphere where students 

are free to ask questions without being embarrassed and all the steps to solving 

problems are discussed explicitly.  If dividing both sides of an equation by the 

same number is a step in solving a problem, it is explicitly shown.  In that way, no 

student is singled out for not understanding even the most basic steps, since all 
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steps are shown until it is absolutely clear that every student understands them.  

The class needs to be fast paced, fun and non-critical. 

Informal ungraded formative assessments (Black & Wiliam, 1998) are 

occurring constantly throughout the time in class.  There is a high level of 

student-teacher and observed student-student interaction so the level of 

student�s ability to solve problem and answer questions is generally clear.  

Weekly, there are graded quizzes or quests (full period quizzes) that represent 

spot checks of whether students are able to apply their knowledge to solving 

problems on their own.  These quizzes are at about the same level as the 

student homework.  No grades are given for homework, class participation, 

projects, etc.  Only demonstrated ability to answer questions or solve problems in 

the presence of a teacher is graded. 

 Summative assessments take the form of chapter tests, midterms and 

finals.  These are all given in the same form as the AP exam: half multiple choice 

and half free response.  The multiple choice questions are conceptual in nature 

while the free response involves solving multi-step problems, often taken from 

prior AP exams.  The identical summative assessment is given to all the students 

in the course on the same day, regardless of their teacher.   

Common assessments and assessment dates enable and encourage 

students to study together in groups, with or without a teacher, to advance their 

skill and understanding: they help engender a culture in which physics is a 

common topic amongst all the students.  This is the opposite of the effect of 

tracking, in that it bonds students rather than separating them. 
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This atmosphere is supported by the availability of after-school 

opportunities to study.  In fact, a critical element of the course is that teachers 

stay after school for two hours twice a week throughout the year.  During this 

time, students are encouraged to work in groups, with or without the teacher, to 

advance their understanding.  Students who have taken the course in previous 

years often work with those groups as informal tutors.  While this continues on a 

steady basis throughout the year, an upcoming test tends to generate large 

numbers of students who enjoy eating pizza and studying physics in a festive 

environment.  This has become a part of the school culture; attracting students in 

all grades that enjoy the chance to help and be helped. 

The opportunity to study after school is a critical element in reducing the 

amount of tracking in the school.  This extra time is necessary for students who 

might otherwise not be able to succeed in such a challenging course: at the 

same time, it reinforces the learning of the stronger students. 

Students who are not satisfied with their grades on any assessment are 

also welcome to come after school to study with others and, when ready, take a 

new version of that same assessment.  The idea is not to �catch� the students 

through testing, but to make sure that they have the necessary skill and 

understanding to proceed.  This also helps generate a positive atmosphere in the 

school: students see that the teachers care about whether they learn: teachers 

are taken out of the role of adversary.  Students can improve their grade through 

better mastering the material.  On the other hand, extra points are not given for 
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�effort� in the form of posters; homework; reports; time spent after school; 

participation; etc.: only for demonstrated understanding on assessments. 

It is important to note that the focus of this course is only partly to teach 

physics content: key goals of the course include developing problem solving 

skills and improving achievement in mathematics.  These goals are consistent 

with the survey results cited above (Van Heuvelen, 2001) in that even most 

physics majors found that physics content was the least useful thing they learned 

by studying physics: problem solving was the most important.   

Viewed from this perspective, many of the issues, such as 

�misconceptions�, considered primary by some in the field become a lower 

priority: it is much more important that students learn how to reason clearly and 

have a positive experience that encourages them to continue studying science 

and mathematics.  Without that further study, little of the physics content will be 

retained in any case.  However, the ability to reason through problems will 

continue to be applied and has a much higher chance of being retained by 

students.  Also, if students have a positive experience, they are more likely to 

study more physics in the future, which further deepen their understanding of 

concepts.  

 In summary, the teacher�s role in this course is primarily to establish a 

non-critical environment in which students can construct physics concepts; learn 

to solve problems; improve their achievement in mathematics; and enjoy science.  

Ideas are introduced using an inquiry approach grounded in demonstration and 

discourse; tested using hypethetico-deductive reasoning; and reinforced by being 
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used to solve problems.  While the teacher provides the information necessary to 

construct those ideas, students are not left to �discover� them: this is done in a 

way that virtually eliminates lecture from the course.  Instead, phenomena are 

shown to the students and the ideas are developed through discourse.  Once 

ideas are constructed, they are used to solve problems and construct higher level 

ideas.  The vast majority of the year is spent by students working together in 

groups solving problems, an activity that they enjoy.  Everything about the way 

that the course is conducted stresses student learning over all else. 

The 9th Grade Physics Text and Curricular Materials 

The following more detailed description, in this and the following section, 

of the proposed text and curricular materials for the 9th grade course expands on 

the second and third research questions.  A unique aspect of this physics course 

is that it is strongly tied to using and developing algebra skills but does not 

require any trigonometry.  Most physics courses are either conceptual in nature, 

such as those based on Hewitt�s Conceptual Physics (2002), or require the use 

of both algebra and trigonometry, such as those based on the text written by 

Giancoli (1998).  It is assumed that students are either too young to employ 

mathematics effectively or, if able to do so, are older and would know both 

algebra and trigonometry.  The students in this course fall into neither of those 

categories.   

Since no textbooks are written to support the approach taken in this 

course, it was necessary to choose whether to add the algebra content to a 

conceptual text or subtract the trigonometry content from an algebra/trigonometry 
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based text.  It was judged easier to subtract than to add, so Giancoli�s text is 

used and those topics requiring trigonometry are omitted.  It turns out that aside 

from the third chapter, where vector operations in two dimensions and projectile 

motion are the topics, only about 10% of the problems in the book require 

trigonometry.   

However, three difficulties remained.  First, there are too few algebra 

based problems in the text and they are not developed in a clear progression 

from simple to difficult.  The assumption seems to be that all physics students are 

already very good at algebra.  While that is certainly not true for our 9th graders, it 

is also probably not true in general: posing an obstacle to any student using this 

book.  Second, there are not enough complex interesting problems that solely 

use algebra.  Since an important aspect of this course is the social constructivist 

group work, challenging problems are required.  Third, the book is written at too 

high a reading level: it is difficult for students to understand a topic by reading the 

book.  Once again, this is clearly a problem for our 9th graders, but probably 

poses a problem for many students: simpler clearer language would help any 

reader.   

The first difficulty was addressed by heavily supplementing the book with 

sets of problems that can be completed prior to attempting those in the text.  The 

difficulty level of these supplementary problems progressively increases until it 

matches the problems in the text, at which point the text problems are used.   

The second difficulty was addressed by supplementing the book with a set 

of more challenging algebra-based problems.  These are problems that students 
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can solve together while working in groups.  The combination of the easier 

problems, the text problems and the more challenging problems allows students 

to work in their zone of proximal development a great part of each class.    

The third difficulty was initially addressed by careful explanation in class.  

However, over the course of time the explanations that have been offered in 

class are also being recorded as written explanations that can serve as a 

supplementary reading on the topic.  Further, by combining some of the 

supplementary problems, discussed above, to those written explanations 

complete chapters are being created based on the unique approach taken in this 

course.  Four chapters are approaching completion and are already being used 

in class.  The text of the chapters was written by me while the problems were 

written by my colleague, Yuriy Zavorotniy and edited by me.  These chapters are 

on the topics of dynamics, energy, momentum and electric force and represent 

about 30% of the course.   

Studying the text of those chapters will do more than any explanation that 

can be offered as to the nature of this course.  Students who have been in the 

class and read the chapters agree that the class experience is very consistent 

between the two.  So reading these chapters should give the reader an 

understanding of the setting in which algebra and physics are taught in a manner 

to support one another.   

One aspect that needs to be noted is that in each example problem all the 

algebra steps are shown and explained.  This is rarely the case in most 

textbooks and leads to much confusion on the part of students who do not want 
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to admit that they do not understand how progress was made from one step to 

the next.  The only way to support the development of the mediational tools 

involved in understanding both physics and algebra is to use them extensively in 

a context where they are useful and have meaning.  That is the aim of the 

course, and naturally, the text that is being written to support it. 

Analysis of the Physics Text 

The text reflects the approach that has been developed to teach 

sophisticated mathematically intensive physics to 9th grade students who either 

just recently took, or who are in parallel taking, an algebra course.  Trigonometry 

is not used in the course even though some students in the school have limited 

familiarity with it.  What would be gained by adding trigonometry is more than 

offset by what would be lost: the need to track students based on this criterion 

and the distraction from developing better algebra skills in all students: algebra 

being the subject that is most used and most prone to misuse in later science 

and mathematics study. 

The text is specifically geared to teaching algebra within the context of 

physics.  The time is taken to introduce the necessary algebra to do the problems 

at hand.  Although it may be the case that some students have already learned 

the needed algebra: it is probably not the case that they have a deep 

appreciation for its usefulness.  Embedding the algebra topic at hand within a 

context benefits students regardless of their prior mathematics achievement.   

An obvious example of this is solving literal equations, equations that are 

to be solved for symbols before values have been substituted.  If a student 
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understands how to solve the equation, 4x = 8, for x, then they should know how 

to solve m = ρV for V: the same principle applies.  This step from procedural to 

conceptual (or structural) mathematics is important if students are to become 

fluent in their understanding of mathematics.  However, many students have 

simply memorized that you solve the first equation by dividing both sides by 4 

and do not have a clue that you solve the second equation by dividing both sides 

by m.  In the text, equations are solved for the unknown before values are 

substituted in and, especially in the early chapters, every step in that process is 

explicitly shown and explained. 

After working with symbols, that approach is also applied to working with 

units: when values are substituted into the solved equation, those values include 

both numbers and units.  Solving for the units extends the conceptual 

understanding of algebra.   

While solving linear equations is required, and therefore taught, in the first 

chapters; studying collisions requires solving systems of linear equations.  So, 

after students have become adept at solving linear equations in the first chapters; 

that knowledge is extended to systems of linear equations in the momentum 

chapter.  This mathematical progression is embedded as a parallel track 

throughout the text. 

Another example of this progression is seen in the use of scientific 

notation.  In the first few chapters, scientific notation is avoided; all the numbers 

are kept whole and simple; the students are challenged enough with solving 

literal equations, often for the first time.  The numbers themselves become more 
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complex as the book progresses: students progress along parallel paths in terms 

of the sophistication of their understanding of both mathematics and physics.  

When the chapter on gravity is reached, scientific notation must be used: there is 

simply no other way to deal with the equation FG = GMm/r2; where G = 6.7 x 10-11 

N·m2/kg2 and masses have values as large as that of the sun, 2.0 x 1030 kg, 

without using scientific notation.   

So a quick review (or introduction for some students) of scientific notation 

is done; reading and problems are worked on and assigned from an algebra text; 

and physics problems are done with escalating levels of difficulty.  In the process 

of doing this all the rules concerning exponents are explored; why 103 x 10-11 = 

10-8; why 103 / 10-11 = 1014; why 103 x 10-3 = 0; why 100 = 1; and why x0 = 1.  

These are not just memorized; they are worked with and learned by the students; 

the students construct a deep understanding of why exponents work the way that 

they do; and they do that in a context where they see why this must be learned; it 

is simply the only way to solve problems involving gravity; to find that that the 

gravitational field of the earth, g, is 9.8 N/kg; to see how that relates to the orbit of 

the moon. 

Once established in this context, problems for the remainder of the year 

often use scientific notation.  This is fundamental to the nature of the course and 

the text: as students progress through the physics book they are also 

progressing through a mathematics text.  Mathematical concepts are introduced 

one at a time so students get to use them extensively before proceeding.  Once 
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learned, concepts are used from then on: a layering of mathematical 

sophistication is embedded in the text.    

When they get to Coulomb�s Law a few months later, scientific notation is 

once again required; but now for very small charges not for very large masses 

and for the very large constant, k = 9.0 x 109 N·m2/C2, not for the very small 

constant, G = 6.7 x 10-11 N·m2/kg2.  In this context, students see the value of 

developing the nomenclature of milli (m): micro (µ): nano (n): and pico (p): they 

simply make it easier to work with small numbers.  They could have memorized 

those at the start of the course, but that would have served little purpose: now 

when they are essential, they are taught and used. 

The textbook is written in a conversational tone and does not, implicitly or 

explicitly, confront student beliefs: it does not say that what students believe 

about the world is wrong.  Because of course, student beliefs are not wrong: 

within the context in which they live and in which we evolved those beliefs are 

perfectly useful and reasonable.  So the book starts with those beliefs, and the p-

prims which constitute them, and explains how they can be extended to be of use 

in new contexts.   

For instance, humans intuitively believe that things that are equal and 

opposite cancel out: the p-prim for balance.  That is used when developing the 

notion of free body diagrams and discussing net forces: the idea that two equal 

and oppositely directed forces add to zero.  It is not necessary to prove that to 

students: they accept it without explanation, so we use it.  Another example is the 

Container Schema (Lakoff & Nunez, 2000), also know as the Law of the 
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Excluded Middle: the idea that all objects are either inside or outside any given 

container.  That is core of all the conservation laws and is accepted by students 

without proof, so it is part of the foundation that can be built upon.  That is the 

key principle upon which the energy chapter, for instance is constructed. 

While it is very difficult to compare textbooks in limited space: I will give it 

a try.  I will do this by copying the explanations given for energy and work in the 

new text as well as those same sections from Conceptual Physics (Hewitt, 2002) 

and Physics: Principles and Applications (Giancoli, 1998).   

Energy Chapter 

Some of the most powerful tools in physics are based on 

conservation principles.  The idea behind a conservation principle is that 

there are some properties of systems that don�t change, even though 

other things about the system may.    

For instance, let�s say that I have a package of candy that contains 

exactly 50 pieces.  If I take those pieces of candy out of the package and 

put them on top of a table, I still have 50 pieces.  If I lay them end-to-end 

or arrange them into a rectangle, I still have 50 pieces.  No matter how 

many different ways I arrange them; I still have 50 pieces.  They may look 

different in each case, but the total number stays the same.  In this 
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example, I could say that the number of pieces of candy is conserved.  

 

Energy is another example of a conserved property of a system.  

It�s hard to come up with a meaningful definition of energy.  It�s a basic 

property of the universe, like time and space, so it�s very hard to define.  

It�s a lot easier to visualize a piece of candy than a piece of energy.  

However, it is possible to mathematically describe the various forms of 

energy.  Having done that, it has consistently proven true that if you add 

up all the types and amounts of energy within a closed system the total 

amount of energy does not change.  

To work with this definition it�s important to understand the idea of a 

closed system.  It�s true that I could change the number of pieces of candy 

on the table by eating some of them, dropping a piece on the floor or by 

opening another package and spilling some of that new candy onto the 

table.  We have to account for any candy that�s been added to or taken 

away from the amount that we started with or we�ll see that the number 

has changed and our conservation principle will seem to have been 

violated. 
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The same thing is true for energy.  The amount of energy in a 

closed system stays constant.  But that means that if we add energy to 

the system or take energy away from a system, we have to account for it.  

Unless we do that successfully, it will appear that the Conservation of 

Energy principle has been violated.  One way that we can move energy 

into or out of a system is called Work.  Work has a very specific 

mathematical definition in physics and it represents the movement of 

mechanical energy into or out of a system.  If work is the only means to 

move energy into or out of our system than it will be true that  

Initial Amount of Energy + Work = Final Amount of Energy 

Or 

E0 + W = Ef 

The forms that energy takes can vary quite widely.  Some of these forms 

include gravitational, electrical, chemical, kinetic, magnetic, elastic and 

nuclear; but there are many more.  In this chapter, we�ll be discussing 

several mechanical forms of energy, kinetic energy, gravitational 

potential energy and elastic potential energy, along with the concept of 

work.   

Work 

Work is defined as the product of the force applied to an object and 

the distance that the object moves in the direction of that force.  The 

mathematical description of that definition is: 

Work = Force x Distance parallel 
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Or 

W = Fd parallel 

It is important to note that work is proportional to the product of the 

force and the distance that the object moves parallel to that force.  That 

means that if the object moves in the direction that I am pushing or pulling 

it, then I am doing work.  If it does not move, or if it moves perpendicular 

to the direction that I am pushing or pulling it, I am not doing any work.   

 

This can be confusing because the use of the word �work� in 

English is similar to but not the same as its use in physics.  For instance if 

someone were to pay me to hold a heavy box up in the air while they 

move a table to sweep underneath it, I would say that I am doing work.  

But I would not be doing work according to the physics definition of the 

term.  That is because the box is not moving in the direction of the force 

that I am applying.  I am applying a force upwards but the box is 

stationary.  Since d parallel is equal to zero, so is the amount of work, W. 

The same thing applies if I were to put that heavy box on a perfectly 

frictionless cart and push it to the side of the room at a constant velocity.  

Since the velocity is constant, the acceleration is zero.  If there�s no friction 
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to overcome, then the force I need to apply (once I�ve gotten it moving) is 

zero.  No force� no work. 

 

The last way that I can do no work, according to the physics 

definition of work, is if I were to carry that box across the room at a 

constant velocity and put it on a shelf at the same height.  Once again, I 

don�t need to apply a horizontal force to keep moving at a constant 

velocity so there are no forces in the horizontal direction.  I am applying a 

force in the vertical direction, to keep the box from falling to the ground.  

But the box is not moving in the vertical direction, it�s moving in the 

horizontal direction.  So in the horizontal direction, the force is equal to 

zero and in the vertical direction d parallel equals zero.  The result is that W 

= 0 in both cases.  



 174

 

While our definition of work may not always seem to relate to our 

experience, it turns out to be a very useful tool in developing a theory of 

energy.  In fact, the three forms of energy that we will be discussing in this 

chapter all become clear through thinking about them with respect to work.   

Units of Energy 

The unit of energy can be derived from the basic equation of work. 

W = F x d parallel 

The SI units of force are Newtons (N) and of distance are meters (m).  

Therefore, the units of energy are Newton-meters (N-m).  Out of respect 

for James Prescott Joule (1818-1889), a key formulator of the concept of 

energy, this is also referred to as a Joule (J). 

J = N-m 

J = (kg�m / s2) - m 

J = N-m = kg-m2 / s2 

 

Example 1:  A constant force of 45 N is applied to an object on a 

frictionless surface.  The force is applied in the same direction as the 
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motion of the object.  How much work does that force do over a distance 

of 6.0m? 

 

Since the force and the distance that the object moves are parallel to one 

another the work done by the force will simply be the product of the two. 

W = Fdparallel 

    = 45 N x 6m  

    = 270 N-m 

    = 270 J 

___________________________________________________________ 

Example 2:  A net force of 45N keeps an object moving in circular motion 

at a constant speed on a horizontal frictionless surface.  The 

circumference of the circle is 6.0m.  How much work does that force do 

during one rotation? 

 

The force needed to keep an object moving in a circle at a constant speed 

on a horizontal frictionless surface is directed towards the center of the 

circle.  However, the velocity of the object is always tangent to the circle.  
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Therefore F and d are always perpendicular to one another.  As a result, 

both d parallel and the work done by the force are equal to zero. 

 

To illustrate how the math is explained in doing a more complex example, I�ll 

jump ahead a few pages so you can see how that looks. 

 

Example 6:  Use conservation of energy to determine how high a ball will 

go if it leaves the ground going straight up with a velocity of 24 m/s. 

E0 + W = Ef                                         

  but W = 0 so 

E0  = Ef       

  the energy is either GPE or KE so 

KE0 + GPE0 = KEf + GPEf       

  then substitute in the formulas for each 

½ mv0
2 + mgh0 = ½ m(vf)2+ mghf        

  but h0 and  vf  are both = 0 so 

½ mv0
2 = mghf         

  divide both sides by m to cancel it out 

½ v0
2 = ghf           

  double both sides 

 v0
2 = 2(ghf)         

  divide both sides by 2 g 

hf  =  v0
2 / (2g)                                         
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  substitute in the given values 

hf  =  (24 m/s)2 / ((2)(9.8 m/s2))      

hf  =  (576 m2/s2) / (19.6 m/s2) 

hf  =  29 m 

Now let us look at how those same topics are explained in Giancoli�s 

book.  This is an excellent book, and we are using it in the course now; but it has 

to be heavily supplemented to become effective in achieving the objectives of the 

course.  That is because it does not show all the algebraic steps in its examples; 

uses trigonometry in even the simplest problems; and introduces complicating 

and unnecessary facts and concepts:  our 9th grade students do not need to 

know that the British units for energy is the foot-pound or that the cgs unit is the 

erg.   

I also do not think that this text gets across the very conceptual nature of 

energy; that energy is a human construct; nor does it make the topic very 

accessible.  Instead, it plunges the student into relatively complicated examples 

using trigonometry where it really does not add much.  That might be alright with 

an advanced student who will understand it anyway; but I am not sure if it really 

helps any student.  The more complicated mathematics could be developed as 

the chapter goes along rather than in the first explanation. 
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Now, let us look at how Hewitt treats those same topics in Conceptual 

Physics (2002).  The following pages include all the worked out examples in the 

energy chapter: none.  This text is dedicated to developing the ideas of physics 

with very minimal mathematics.  While some mathematical problems occur at the 

end of chapters, they are not explained in the text through examples.  In this 

case, the idea of explaining energy without mathematics seems strange since 

energy is a mathematical construct: there is no such thing as �energy� without the 

mathematics that defines it.     

While the belief seems to be that in the absence of problems students will 

focus on ideas, my experience with students using this book does not support 

that.  In the absence of problems: students memorize terms.  They can 

regurgitate the definition of work or energy, but they don�t develop a feeling for 

what they are or how to use them.   

Of course, this also means that there is no attempt made to embed 

mathematics in the context of physics.  Problem solving is necessary if a student 

is to appreciate and understand physics and using mathematics in physics is a 

great way to deepen a student�s understanding of mathematics.   

Understanding is supported best through a delicate balance among 

engaged students in solving challenging problems, examining increasingly 

better solution methods, and providing information for students at just the 

right times (Dewey 1933; Brownell and Sims 1946; Hiebert et al. 1997) 

(Hiebert & Wearne, 2003, p. 5) 
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This book takes a completely different path and, in the end, both the 

teachers and students felt that this text did not encourage learning so much as 

memorization.  In AY2006, we began using the Giancoli text even in our regular, 

non-honors, 9th grade physics classes.  However, we needed to supplement it 

heavily to make it more useful and accessible to all our students.  As the 

chapters have been written for the new text, they have been copied and given 

out to the classes in lieu of the supplementary materials and that seems to work 

better.   
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The 9th and 10th grade Physics Curricula 

 In this section the relationship between the curricula for the two physics 

courses is made clear, further addressing the second and third research 

questions.  The 9th grade physics course serves as the foundation for the entire 

science and mathematics program.   It supports all the science that is to follow as 

well as helping to establish a deeper understanding of mathematics.  Because 

only a portion of the students will go on to study AP Physics B the following year; 

the course curriculum (see Appendix B) was written so that the course could 

serve two roles: it must describe the first half of a two-year sequence culminating 

in the AP Physics B exam and it must represent an effective one-year standalone 

physics course.  While there are many ways to write a curriculum that serves 

either of these purposes, serving both of them acts as a constraint.   

It was possible to write a curriculum that serves both purposes because 

there are many shared objectives.  In order of priority, the goals for the course 

were to develop in students the following: problem solving strategies and 

analytical thinking; a deeper understanding of the power and usefulness of 

mathematics; an understanding of the nature of science; and physics content.  

Physics content is the least priority as it will be the first thing forgotten by 

students who go no further in physics: however, it is still important for those 

students who go on to more advanced courses that rely upon that content 

knowledge. 

Based on these priorities, the course was developed to cover just two 

major topics: Mechanics and Electricity & Magnetism.  In both cases, these 
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topics would be explored carefully and to the level called for by the AP Physics B 

curriculum; the only exception to that being the use of trigonometry which would 

wait until the following year. 

Within these two topics there is a plethora of complex and interesting 

problems: problems that serve as a context within which analytical skills, 

mathematical techniques and the skills of inquiry can be developed.  Two other 

choices could have been made and its worth commenting on them to illustrate 

the different nature of the courses that would have resulted. 

When the highest level 9th grade physics course was Physics I, it was only 

taken by Pre-Engineering students; all of whom were required to take Physics II 

the following year; and some of whom then went on to study AP Physics B in 11th 

grade.  At that time, Physics I was devoted to Mechanics alone.  All these 

students were studying geometry in parallel to physics and the geometry 

curriculum had been designed to teach all the trigonometric functions by mid-

year.  The physics course mirrored that by teaching mechanics without 

trigonometry during the first half of the year and introducing trigonometry during 

the second half. 

When the decision was made to let students from other programs, not 

Pre-Engineering, take Physics Honors the curriculum had to change.  First, those 

students were not necessarily taking geometry in 9th grade so trigonometry could 

not be used in the second half of the year: this eliminated the teaching of 

trigonometry based mechanics.  Second, those students were unlikely to go on to 

a second year physics course: this might be their only exposure to physics.  If so, 
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just studying mechanics did not seem sufficient.  Third, it was felt that developing 

in all the students an understanding of the atom and electric force would be 

important to prepare them for chemistry.  As a result, the decision was made to 

move trigonometry based mechanics to the beginning of the 10th grade course 

and devote the second half of the 9th grade course to Electricity and Magnetism.  

This made the course more diverse but still very much focused on problem 

solving, mathematics and inquiry. 

An alternative direction would have been to make the course more of a 

survey course: the typical high school physics course that is taught in many 

schools and assessed by the Regents Physics exam and the Physics SAT II 

exam.  However, this would have had the effect of emphasizing content over our 

goals for the course: problem solving, mathematics and inquiry.  Courses of that 

nature cover twice the material in the same amount of time: the result is that 

depth and understanding is sacrificed for breadth.   

If the primary goal of the course were to teach physics content, that would 

have been a reasonable decision.  However, it is questionable how much of that 

content is retained and much must be sacrificed in order to cover it.  As was 

pointed out by Van Heuvelen (2001), and cited above, when university physics 

majors were later surveyed as to what was most valuable of what they learned in 

the university; problem solving was ranked highest and physics content was 

ranked lowest.  This would surely be even more true of high school students; the 

vast majority of whom will not become physics majors. 
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Having completed their Physics Honors course; students who choose to 

do so may take AP Physics B.  While the curriculum for AP Physics B is 

established by the College Board: the curriculum for this course, of that same 

name, is unique (see appendix C).  That is because of the way that the 

objectives of the College Board curriculum have been divided between the two 

years: that division fundamentally changes the nature of both courses: Physics 

Honors and AP Physics B. 

The first topic of the AP Physics B combines the learning that was 

accomplished in two of the students� prior courses: the mechanics of Physics 

Honors is combined with the trigonometry of Geometry Honors.  This 

combination is powerful: it allows students to solve all the two-dimensional 

mechanics problems that had been held in abeyance.  It opens the door for them 

to analyze new classes of problems, like projectile motion; the motion of an 

electron through a cathode ray tube; or the net force due to three charges that do 

not lie on a line, as they were constrained from doing the prior year.  

Rather than re-teach the prior year�s content; that content serves as a 

foundation upon which is built an entirely new understanding; reinforcing the prior 

year�s learning and showing students its usefulness.  All the topics of the prior 

year are reprised by seeing them through this new prism of trigonometry.  This 

becomes much more than a review; it is s rediscovery of the mathematics and 

physics that they learned before.  This is followed by teaching students the 

remaining topics of the AP Physics B curriculum: waves; sound; wave optics; 

geometric optics; thermodynamics; and introductory atomic & nuclear physics. 
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Analysis of AP Results 

 This section answers the fourth research question, �How does the AP 

performance of the students in this program compare to that of students in other 

New Jersey schools?�.  I evaluated the AP results in four ways.  I determined the 

average score for those who took each test; the AP participation rate by dividing 

the total number of tests taken by the number of graduating seniors; the passing 

rate by dividing the number of scores of 3 or above by the number of graduating 

seniors; and a weighted measure of overall performance through the AP Metric: 

calculated by dividing the number of AP points earned by the number of 

graduating seniors.  Below, I provide data for the school, its departments and the 

individual courses.  I also calculate normalized results, for participation, passing 

rates and the AP Metric, by dividing the school�s results by that of the overall 

state.  All data are provided from the inception of the school through AY2005, the 

last year for which AP scores have been received.  The only exception is that 

pertaining to school participation: those data are available through AY2006. 

A general picture of the progress of the school can be seen in Figure 13, 

Figure 14, and Figure 15.  These figures show the number of AP exams taken 

each year and  normalized comparisons of the school versus New Jersey using 

the passing rate on AP exams and the AP Metric (calculated for all possible AP 

courses, regardless if they are offered by the school).  A reading of 1 would put 

the school on par with New Jersey: the AY2005 figures of 1.3 and 1.4 show that 

the school exceeded the New Jersey rate by 30% and 40% by these measures. 
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Figure 13: Schoolwide AP participation: the number of AP exams per year. 
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Figure 14: Normalized school performance based on number of AP passing scores (NJ=1) 
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Figure 15: Normalized schoolwide performance as measured by the AP Metric (NJ =1) 
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 The growth in these measures is mostly due to the rapid growth of AP 

participation at the school.  Figure 16, Figure 17 and Figure 18 reveal that trend 

and break it down by department.  As described above, departmental 

comparisons are important for this study as they make it possible to contrast the 

performance of departments which should be affected by the implementation of 

the new science sequence to those that should not.  

0

100

200

300

400

500

600

2002 2003 2004 2005

Academic Year

N
um

be
r o

f T
es

ts Art & Music
History

Languages
English

Math
Science

 

Figure 16: Total schoolwide AP points by department. 
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Figure 17: Total schoolwide AP exams by department. 
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Figure 18: Normalized schoolwide AP participation (NJ Rate =1). 

 The above charts clearly show that the number of AP exams taken at the 

school has increased dramatically each year.  Part of that is due to the growth in 

the size of the school from a graduating class of 82 seniors in 2003 to 150 

students in AY2006.  However, the normalized data given in Figure 18 shows the 

growth per student relative to New Jersey.  This shows that from AY2003 to 

AY2005 the normalized participation rate grew from about 75% of the state 

average to about 140% of the state. 

 As this study is focusing on the effect of the science/math program it is 

important to look at the differential results between science and math versus the 

other departments in the school.  As the students in the school perform 

comparably in terms of their math and verbal SAT results, any difference can be 

plausibly argued to be an effect of the program. 

Figure 19 shows the raw number of AP exams taken by department while Figure 

20 divides those figures by the number of graduating seniors in order to 

compensate for changes in enrollment.   

 



 195

0

50

100

150

2003 2004 2005 2006
Academic Year

Nu
m

be
r o

f T
es

ts
 

Science
Math
English

Wrld Lang
History
Art & Music

 

Figure 19: AP exams by department. 
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Figure 20: AP participation rate by department. 

 

While the AP scores for AY2006 are not yet available, the number of 

number of passing scores by department though AY2005 is shown in Figure 21.  
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Figure 21: Number of AP Passing Scores by department. 

In Figure 22, I normalized the school�s departmental participation rates to 

that of the state to compensate for statewide variances.  I did this by dividing the 

school participation rate by the state participation rate for each department: the 

result is a normalized comparison with 1 signifying that the school rate equals 

that of the state; numbers above 1 give the multiple of the school rate; and 

numbers below 1 indicate the fraction of the school rate.  The 2006 figures are 

based on a combination of the actual school figures and projected state figures 

based on prior year participation rates, which have been relatively stable. 
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Figure 22: Normalized Departmental Participation Rate (NJ Rate =1) 



 197

 The above charts (Figure 19, Figure 20, Figure 21 and Figure 22) make it 

clear that the high participation rate for the school is dominated by science.  

Figure 23 and Figure 24 show that, despite those high participation rates, the 

average scores on the exams have stayed relatively consistent and are in line 

with the state averages.  It would have been easy to have raised the average 

score simply by restricting who took the AP exam, but that would not have been 

consistent with the goal of the program. 
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Figure 23: Average school AP scores by department. 
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Figure 24: Average New Jersey AP scores by department. 
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Figure 25 shows the school�s performance using the AP Metric.  This was 

normalized to state data by dividing the number of AP points scored per student 

at the school by that same figure for the state.  A score of 1 on this chart would 

indicate that the school is performing at the same level as the state; scores 

above 1 would represent the multiple of performance above the state; and scores 

below 1 reveal the fractional shortfall relative to the state. 
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Figure 25: Normalized departmental performance as measured by the AP Metric (NJ = 1). 

The school has clearly experienced a rapid growth in the number of 

science AP points scored per pupil: this is also true of mathematics, but to a 

lesser extent.  While that growth has leveled in math, it is projected to continue in 

science.  It is almost entirely due to increased participation rates, as average 

scores have remained at about 3. 

The rapid growth that has occurred in the sciences is expected to continue 

as more students, not in Pre-Engineering, participate in the new science 

sequence and take two math courses in 9th grade.  This is further evidenced by a 

more detailed examination of the growth in science participation down to the level 

of the specific courses.  Since the new science sequence leads to AP Physics B 
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first; with AP Chemistry and AP Physics C the following year; and AP Biology two 

years later; it would be expected that the growth trend, by course, would reveal 

that same layering.   

This layering is in fact revealed in the following four charts: Figure 26 

shows the total number of AP science exams given by year; Figure 27 presents 

the individual course test data; Figure 28 shows the individual test data 

normalized for the number of graduating seniors while Figure 29 is normalized to 

the state.  It is clear in all of these charts that the expected pattern of layered 

growth by science course has occurred: the growth has been led by Physics B, 

followed by Physics C and Chemistry and is occurring last in Biology. 
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Figure 26: Science AP exams by course and in total. 
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Figure 27: Science AP exams by course. 
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Figure 28: Science AP Participation Rate by course. 
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Figure 29: Normalized AP participation rates by course (NJ Rate =1). 

All of these charts reveal the layered growth by course that was 

anticipated.  Specifically both AP Physics C and Chemistry are following the 

growth of physics, as would be expected.  Although the AP Physics C rise is 

greater than that of chemistry, that is a reasonable outcome due to the general 

strength and interest of the students in physics 

Biology is also rising, but its growth is trailing behind that of chemistry, as 

was expected.  Even though there should be some limitation in the number of 

students who take chemistry and biology as compared to other schools, due to 

the disproportionate number of students taking advanced physics courses and 

the limitation of the amount of time in the school day due to the requirements of 

the students� vocational programs, it can be seen that both biology and chemistry 

are being taken at rates that exceed the state average.   

The only unexpected outcome in the above data is the sudden emergence 

of Computer Science A.  That resulted from a convergence of interest on the part 

of Pre-Engineering students who were given the option of taking that as opposed 
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to a second PLTW engineering course and the ITT majors, for whom it was an 

option in their basic program.  That trend will probably continue and computer 

science seems to be a clear beneficiary of the analytical skills that seem 

transferable from mathematics and science.  In fact, the teacher of that course 

has indicated that the Pre-Engineering students, despite never having taken a 

programming course before, actually outperformed the computer programming 

majors.  She attributed that to their advanced development in analytical thinking. 

While participation on Science AP exams has been growing quickly, so 

have the overall results.  This can be seen in the following two charts (Figure 30; 

Figure 31) that use two different approaches to measure the AP performance: 

normalized passing scores and normalized AP Metric results.  In both cases, the 

school results are compared to the state with the New Jersey rate set equal to 

one. 
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Figure 30: Normalized AP Passing Scores (3+) by course (NJ Rate =1). 

 



 203

0
2
4
6
8

10
12
14
16

2003 2004 2005
Academic Year

N
or

m
al

iz
ed

 V
al

ue
s

Physics B Phys.C Mech. Phys.C  E&M Chemistry Biology Comp. Sci. A
 

Figure 31: Normalized comparison of AP science performance by course using the AP 
Metric (NJ rate = 1). 

Figure 30 Both Figure 30 and Figure 31 show the dramatic rise of AP 

Physics B and AP Physics C to levels about ten times the state average, whether 

measured by passing scores or by the AP Metric, in the 2005 academic year.  

Chemistry and biology are at about the same rate as the state in AY2005; 

however, the growth in their participation rates probably anticipates a rise in their 

AY2006 performance results as well. 

While these data are consistent with the hypothesis that the science 

program is having a positive effect in AP participation and performance in 

science and mathematics relative to departments which would not have been 

affected by that program such as English and social studies, we also need to 

consider the alternative explanations.  

AE1.  The growth in the Asian population of the school could account for 

improvements in performance in mathematics and science achievement as 
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this demographic group has historically performed well in these 

disciplines.  

While this explanation might seem reasonable in terms of year to year 

changes, it needs to explain the SAT data as well.  The SAT scores of the 

students in the school show small parallel year to year improvements in math 

and verbal aptitude, while their AP results show rapidly diverging levels of 

achievement in those areas.  Also, in the later years the AP data show wide 

differences in achievement between math and science versus English and Social 

Studies when compared to the overall state, while the SAT scores of the students 

in math and English are both similar to each other and just barely above that of 

the overall state.  Certainly the high level of AP performance in math and science 

are not consistent with the small difference in SAT scores.  Supporters of this 

explanation have to show why the SAT results do not also mirror the changing 

demographic.  

AE2.  The differential performance between science and mathematics 

versus English and social studies could be accounted for by the growth in 

the Asian and Hispanic population.  Both these groups have a higher 

proportion of students that speak English as a second language and may 

have weaker performance in subjects that require English language skills.   

This explanation is very similar to AE1, but is based on the issue of 

language rather than race.  It faces the exact same problems with regard to the 

SAT data.  If a student had difficulty on AP English or social studies tests due to 

their language, one would expect that they would also have trouble on the SAT 
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Verbal test: but these students scored above the state average on that test.  

Also, none of the students in the school require, or receive, English as a Second 

Language (ESL) support.  This would certainly argue that there is not a serious 

language problem at the school.  Again, supporters of this explanation would 

have to show why the SAT data fail to support it. 

AE3.  Outside factors in the community or internal factors, such as the 

influence of guidance counselors, etc. could be playing a role.   

This is likely a factor in the complete explanation; the question is whether 

it is a cause or effect: it may well be both.  If the science and math programs 

were not considered to be unusually good at the school, there is no reason to 

expect that the four guidance counselors at the school would steer their students 

to it more than would be the case in schools across the state or from year to 

year.  The same would apply to other outside influences such as parents, 

siblings, friends, etc.   

The comparisons to the state and from year to year require an explanation 

as to why these influencers have decided to encourage students in the direction 

of taking more science courses and more science and math AP courses.  Even 

given that, one would still need to explain why the students, once in the courses, 

perform so well in them.  Just because students are encouraged to do something 

does not mean that they will do it; and it certainly does not mean that they will do 

it well.   

On the other hand, this could well be a supporting explanation: once the 

program was proving effective the students in the school would be drawn to the 
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program at the same time as guidance counselors, friends and other influencers 

would push them in that direction.  This would support the underlying trend and 

would represent a beneficial cycle. 

AE4.  Apparently high performance in mathematics and science as 

compared to English and social studies could reflect weakness in the 

English and social studies programs and/or the faculty in those 

departments rather than strengths in the science and mathematics 

program.  

  This explanation probably also contributes to the overall explanation.  

Certainly weaknesses in other departments in the school would result in higher 

levels of participation in mathematics and science.  Students need to study 

something, so a weakness in one area will tend to create a relative strength in 

another.  While this is probably one factor, the question is how strong a factor is 

it?  While the result of this factor should increase participation in science and 

math AP courses, it should also lead to students taking high numbers of �easy� 

non-AP electives, for instance art, music, etc.  While this would argue that 

weakness in other departments might well be a factor; that also is another way of 

saying that there must be strength in the science and math programs.  In a 

sense, that supports the original hypothesis. 

Also, signing up for an AP class is a lot easier than succeeding in it.  If the 

program were not effective students might sign up, since it might be better than 

other alternatives, but there is no reason to expect that they would succeed in 
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such large numbers if the program were not effective.  This aspect would support 

the original hypothesis.   

AE5.  The performance of the mathematics and science program might be 

due to other strengths in those programs, not related to the hypothesis, or 

the strength of the faculty.   

This study will not be able to address the difference between this 

explanation and the hypothesis of the study.  It is unlikely, but possible, that 

faculty alone could be the difference.  There are nearly twenty faculty members 

teaching math and science at the school and it�s unlikely that they are on 

average very much different than that of other schools.  While that is possible, it 

would raise the question as to how that occurred.  It is currently more difficult to 

hire high quality math and science teacher than English and social studies 

teachers.  Vocational / technical schools are not generally the first choice of 

academic teachers so this would seem to make hiring those teachers 

problematic for a school like ours.  One explanation would be the attractiveness 

of the science and math program at the school: making this a secondary 

explanation.  However, there is no measure of faculty quality that was used in 

this study which could extract faculty ability from the data obtained. 

Also, it is very possible that the program is successful for reasons that are 

not obvious.  That would be difficult to determine in any circumstance and must 

be considered as other schools move to adopt this program.  As will be 

discussed in chapter five, the adoption of this program at other schools may be a 
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good way that the difference between this explanation and the hypothesis can be 

explored. 

AE6.  As a vocational / technical school, this site could be particularly 

fertile for mathematics and science and the opposite might be the case for 

English and social studies. 

 This explanation is reasonable in terms of the more likely association 

between student interests in technical fields such as Computer Science, 

Automotive Service or Pre-Engineering and mathematics and science versus 

English and social studies.  It is less clear how that would relate to student 

interests of those who are majoring in Cosmetology, Fashion Design or Law and 

Justice.  However, it is the case that AP participation is considerably higher 

among the former group of students so could certainly be an explanation. 

 It is unlikely to be a primary explanation in that high AP results are not 

associated with vocational / technical schools in general.  In fact, a cursory 

review of other such schools in New Jersey has yet to identify any that offer any 

AP courses.  While a more thorough review could be a part of future research, 

even this preliminary study makes it unlikely that vocational / technical school are 

competitive, or perhaps even present, in this category.  So while this explanation 

could be reasonable in terms of the differential between AP exams taken in 

different departments, it has the burden of explaining why any are taken at all. 

 Also, since a sister school of the school under study is a magnet school, 

with programs in mathematics, science, technology and engineering, there is a 

natural drain of students with a strong interest in those fields from our school.  
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Students who are identified, or believe themselves to be capable in those areas, 

do not attend the school under study, they stay in their home school or attend the 

magnet school.  However, this explanation could be contributing more of an 

effect as the reputation of our school in these areas grows.  Therefore, it must be 

considered as a possible primary or secondary explanation. 

Analysis of HSPA Results 

The answer to the fifth research question, �How does the HSPA 

performance of the students in this program compare to that of students in other 

New Jersey schools and to their English HSPA performance?� is provided in this 

section.  The High School Proficiency Examination (HSPA) is given to all New 

Jersey 11th grade students.  In theory, scoring at the �Proficient� level on both the 

Language Arts and the Mathematics HSPA is required in order to obtain a high 

school diploma (in practice, an alternative assessment, the SRA, is often used to 

bypass this requirement).  Student scores fall into three categories of proficiency: 

Partial, Proficient or Advanced.  To be considered Proficient a student must 

obtain a score of 200: a score of 250 is considered Advanced.  The figures for all 

schools in the state, as well as for the overall state are published annually in the 

New Jersey school report card: the source of the figures used below. 

A common misunderstanding that occurs in evaluation year to year 

performance in data of this sort is to forget that each year represents a different 

cohort of students.  Thus, changes from year to year reflect a combination of 

factors including both the program as well as the students who are taking the 
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assessment in that year.  This should be kept in mind when considering these 

results. 

Table 6 gives the school and the state HSPA data for AY2004 and 

AY2005 for both mathematics and language arts.  This same data is shown 

graphically in Figure 32 and in Figure 33.   In terms of the math results, there are 

two very important findings.  First, in AY2005, the percentage of students in the 

school who were Advanced Proficient on the Math HSPA was 41%: the state 

percentage was 28%.  In the prior year, the school percentage was about the 

same as that of the state: 24%.  This shows that there has been a dramatic 

increase in the number of students in the school who are considered very strong 

in mathematics relative to the state.  Second, the percentage of students at the 

school who were not Proficient fell from 15% in 2004 to under 1% in 2005 

(representing just one student).  The state average for students who were not 

Proficient was 30% in 2004 and 24% in 2005.  The combination of these results 

indicates that student achievement in mathematics at the school has been 

improved significantly relative to the state.   
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Math Year # Tested
Partial Proficient Advanced

School AY2005 154 0.6% 58.4% 40.9%
AY2004 104 15.4% 60.6% 24.0%

State AY2005 93939 24.5% 47.1% 28.1%
AY2004 90712 30.0% 45.6% 24.5%

Language Arts Year # Tested
Partial Proficient Advanced

School AY2005 154 1.3% 83.1% 15.6%
AY2004 104 3.8% 77.9% 18.3%

State AY2005 94858 16.8% 63.6% 19.6%
AY2004 90946 17.8% 65.0% 17.2%

Proficiency Percentages

Proficiency Percentages

 

Table 6: School and State HSPA Results for AY2004 & AY2005 

 
This dramatic improvement can be seen in Figure 32, which shows the 

year to year data for the school and the state.  In the school data, the number of 

students who were not proficient virtually disappears in AY2005, while the 

number of students who achieved Advanced Proficiency is above 40%.   
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Figure 32: Math HSPA results for the school and the state. 

 

The gains at the top end of the scale, the percentage of students who are 

Advanced Proficient, cannot be attributed to a general increase in student 

aptitude at the school.  First, these gains are much larger than would be reflected 

by the small improvement in SAT scores that were reported above.  While there 

has been an improvement in SAT scores, it has been on the order of about 25 

points, certainly not enough to have created such a dramatic shift in 

performance, a 70% increase in the number of students who were judged 

Advanced Proficient in mathematics, to a figure that is 45% above the state 

average.   

Second, if this were due to a general improvement in student aptitude it 

should also have led to a similar improvement on the Language Arts HSPA: 

especially since the school�s students scored better than the state average by 

about the same amount on both the Math and the Verbal SAT: by this measure 

their aptitude in math and verbal ability should be comparable.  Also, the year to 
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year improvement in SAT performance was about the same for math and verbal.  

As can be seen in Table 6 and Figure 33; there was no comparable improvement 

in the percentage of Advanced Proficient students in the school, relative to the 

state, on the Language Arts HSPA. 
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Figure 33: Language Arts HSPA results for the school. 

 

In AY2005, the percentage of students in the school who were Advanced 

Proficient on the Language Arts HSPA was 16%: in that same year the state 

percentage was 20%.  In the prior year, the school percentage was 18% while 

the state percentage was 17%.  The percentage of the school�s students who 

were judged Advanced Proficient on the Language Arts HSPA declined last year 

and has remained at or below the state average.  Given that the school�s 

students have Verbal and Math SAT�s scores that are comparable to those of the 

state�s figures, and to each other, this represents an indication that programmatic 

differences might well account for the exceptional performance of the school�s 

students on the Math HSPA.   
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 In Figure 34, the relative performance of the students in the school by the 

measure of Advanced Proficiency on the HSPA is shown by normalizing both the 

math and the language arts statistics to that of the state.  I did this by dividing the 

percentage of students achieving Advanced Proficiency in the school by that 

same percentage for the state.  It is clear from this that the only improvement 

was in mathematics, and that that improvement was dramatic. 
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Figure 34: Number of Advanced Proficient students relative to the state (NJ =1). 

  

It is important to point out that the school does not offer any courses to 

prepare students for the Math or Language Arts HSPA�s.  The results that have 

been achieved are reflective of the school�s normal academic programs. 

 While the cause of this improvement in mathematics achievement cannot 

be known with certainty; it is clear that student achievement in mathematics is 

improving relative to both the state and relative to Language Arts.  These facts 

certainly support the plausibility of the argument that the new 

science/mathematics program is having a beneficial effect: certainly a contrary 

result would have hurt the plausibility of that argument.  However, we need to 

once again consider the alternative explanations. 
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AE1.  The growth in the Asian population of the school could account for 

improvements in performance in mathematics and science achievement as 

this demographic group has historically performed well in these 

disciplines.   

Supporters of this explanation need to address the lack of correlation 

between SAT results and HSPA results.  The SAT scores of the students in the 

school show small parallel year to year improvements in math and verbal 

aptitude, while their HSPA results show rapidly diverging levels of achievement in 

those areas.  The HSPA data for 2005 show wide differences in the percentage 

of students who are judged Advanced Proficient in mathematics versus language 

arts: the school is more than 40% higher than the overall state in mathematics 

but more than 20% below the state in language arts.   This effect is quite large 

while the difference in relative performance to the state on the math and verbal 

SAT tests is quite small: 12 points above in math and 9 points above in verbal for 

that same cohort. Certainly the high level of HSPA performance in math and 

science are not consistent with the small difference in SAT scores.  As was the 

case with the AP results, supporters of this explanation have to show why the 

SAT results do not also mirror the changing demographic.  

AE2.  The differential performance between science and mathematics 

versus English and social studies could be accounted for by the growth in 

the Asian and Hispanic population.  Both these groups have a higher 

proportion of students that speak English as a second language and may 

have weaker performance in subjects that require English language skills.   
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Once again, this is similar to AE1 and has the same burden of explaining 

why these differences do not show up in the SAT results.  This requires believing 

that the aptitude measured by the SAT verbal test is irrelevant for measuring 

likely performance on the Language Arts HSPA.  While this is possible, research 

would have to be done showing that the SAT is easier for students for whom 

English is a second language than is the HSPA.  If that is the case, it would be 

important for the state to be made aware of that since it would affect the 

graduation rates of that group and not be correlated to their likely success in 

college. 

AE3.  Outside factors in the community or internal factors, such as the 

influence of guidance counselors, etc. could be playing a role.   

This explanation would only apply to these HSPA results in a secondary 

sense.  It would have to be shown that these results are due to course choices 

recommended by these influencers: that due to them students took courses that 

better prepared them for the math HSPA than for the language arts HSPA.  

However, that would still require that those recommended courses were effective 

in accomplishing that preparation: which would require invoking one of the other 

explanations as well. 

AE4.  Apparently high performance in mathematics and science as 

compared to English and social studies could reflect weakness in the 

English and social studies programs and/or the faculty in those 

departments rather than strengths in the science and mathematics 

program.  
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This would explain the relatively poor results on the language arts HSPA 

but would not address the very high percentage of students who are Advanced 

Proficient on the 2005 math HSPA.  However, it could serve as a partial 

explanation if used in conjunction with another explanation that accounted for the 

high math results. 

AE5.  The performance of the mathematics and science program might be 

due to other strengths in those programs, not related to the hypothesis, or 

the strength of the faculty.   

The relevance of this explanation to this HSPA data is really the same as 

was discussed for it vis-à-vis the AP data in the section above.   

AE6.  As a vocational / technical school, this site could be particularly 

fertile for mathematics and science and the opposite might be the case for 

English and social studies. 

 While this explanation has some merit in terms of the low scores on the 

language arts HSPA results, it does not address the unusually high scores on the 

mathematics HSPA in 2005.  It also does not address the lack of correlations 

with SAT results.  Traditionally, vocational / technical schools have not performed 

particularly well on state exams of any sort.  A preliminary review of other such 

schools in New Jersey confirms that: they typically have low percentages of 

students who are Advanced Proficient in either math or language arts.  However, 

to fully explore this explanation further research into the results of a broader 

spectrum, perhaps all the vocational / technical schools in New Jersey, would 

need to be conducted. 
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Analysis of Participation in Science Electives 

The answer to the sixth, and final, research question, �What are the trends 

in the participation rate in science electives?� is answered in this section.  

Another measure of the effectiveness of the science program is the number of 

science courses that students elect to take each year: a proxy for their interest in 

science and/or their belief in the value of studying science.  This measure is to a 

significant extend confounded with the growth in AP participation reported above, 

since most science electives are AP courses.  However, while all AP courses are 

elective, there are additional non-AP science electives.  

Figure 35 and Figure 36 show the trend in participation in all science 

electives. 
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Figure 35: Total enrollment in science electives. 

 



 219

0%
20%

40%

60%
80%

100%

120%
140%

2003 2004 2005 2006

Academic Year

Pe
rc

en
t

 

Figure 36: Total participation rate in science electives (total science elective 
enrollment divided by the number of graduating seniors). 

  

Clearly the interest in studying science at the school has grown a great 

deal over the years.    The school requires students to take three years of 

science.  In addition, the Law & Justice program requires its students (about 20 

this year) to take a fourth year: Forensics Science.  Combining those required 

courses with the 120% science elective participation rate in AY 2006, leads to the 

result that the average student in the school is taking 4.3 years of science; well 

above the 2 or 3 years of science being taken at many schools. 

The breakdown of the courses being taken is shown in Figure 37 and 

Figure 38.  Interestingly, two non-AP courses are among the most popular in the 

school: Anatomy & Physiology is the second most popular and Earth science 

ranks as the fifth most popular science elective.  The interest in these courses 

indicates a general interest in science: not just an interest in getting AP credit for 

science course. 
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Figure 37: Enrollment in science electives by course. 
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Figure 38: Participation rate in science electives by course. 

 



 221

Once again, while the program under study is one explanation for this very 

high level of participation in science electives, many alternative explanations are 

possible.  These include: 

 

AE1.  The growth in the Asian population of the school could account for 

improvements in performance in mathematics and science achievement as 

this demographic group has historically performed well in these 

disciplines.   

This explanation is reasonable as a contributing factor in the year to year 

data as there may well be a demographic explanation for an increased interest in 

science and mathematics versus English and social studies.  In this case, the 

comparable SAT scores would not be a problem as they measure aptitude not 

interest or cultural influence, and participation rates might well be more affected 

by interest and perceived value rather than aptitude. 

However, even in the last year of the study, AY2005, the percentage of 

the school which is Asian only reached 20% while the percentage, based on 

courses taken divided by the number of graduating seniors, taking science 

electives reached 120%.  This makes it unlikely for this to be the sole 

explanation.  Also problematic for this explanation is the fact that the growth in 

Asian population would still have been mostly in the 9th and 10th grade in 

AY2005: 9th graders cannot take a science elective and only a small percentage 

of 10th graders in specific majors have room in their schedules to take the one 
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science elective that would be open to them: AP Physics B.  So while this 

explanation may play a role in an overall explanation, it cannot stand alone. 

Interestingly, this explanation might also be more an effect than a cause.  

As the results of the school in mathematics and science have become more 

known in the county, the school might be more attractive to students whose 

culture values science and mathematics education.  That might explain a growth 

in that demographic at the school.  If that is the case, it would be expected that 

the trends seen here will continue and may accelerate. 

 

AE2.  The differential performance between science and mathematics 

versus English and social studies could be accounted for by the growth in 

the Asian and Hispanic population.  Both these groups have a higher 

proportion of students that speak English as a second language and may 

have weaker performance in subjects that require English language skills.   

As was the case for AE1, this explanation is reasonable as a contributing 

factor in the year to year data as there may well be a linguistic explanation for an 

increased interest in science versus English and social studies.  Students who 

feel less comfortable or capable, speaking or reading English might be less likely 

to choose electives in English or social studies than in mathematics or science.  

In this case, the comparable SAT scores would not be as problematic as they 

measure aptitude not interest or comfort level, and participation rates might well 

be more affected by those factors than by aptitude.  
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In this case, the percentage of Hispanic and Asian students in AY2005 

was nearly 45% of the school: a percentage large enough to have more 

significantly affected these results.   

This would indirectly explain the high participation rates in science 

because students need to take some electives: if they don�t choose those that 

require strong language skills, it makes it more likely that they will take those that 

do not.  While this could lead them towards electives in art, music, etc. as well, 

they would be advised by their guidance counselors to take more �academic� 

electives in order to be admitted to better colleges.  Thus this explanation, in 

conjunction with the following AE3, could partially explain these results. 

 

AE3.  Outside factors in the community or internal factors, such as the 

influence of guidance counselors, etc. could be playing a role.   

This is probably where this factor would have the greatest impact.  It is 

easy to imagine guidance counselors pushing students towards science courses 

in order to bolster their transcript.  However, it is unclear why that would be more 

true at this school than others unless it follows from the established success of 

the science program.  In that case, it might be reinforcing an established pattern. 

However, as noted in the above discussion of AE2, the need to take 

academic courses coupled with a population that is less comfortable in English 

could contribute to the overall explanation of the participation trends at the 

school. 
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AE4.  Apparently high performance in mathematics and science as 

compared to English and social studies could reflect weakness in the 

English and social studies programs and/or the faculty in those 

departments rather than strengths in the science and mathematics 

program.  

 This explanation could also work in conjunction with AE2 and AE3 to 

provide an alternative overall explanation.  Guidance counselors would 

encourage students to take courses in which they are more likely to benefit and 

which would look good on their transcripts.  If they view the other academic 

departments as weak, they will encourage students towards the relatively 

stronger departments.  That strength is not necessarily due to the hypothesis 

under study; it could just be that the science courses aren�t as �bad� as the other 

academic courses and students need to take something. 

 

AE5.  The performance of the mathematics and science program might be 

due to other strengths in those programs, not related to the hypothesis, or 

the strength of the faculty.   

This study is not able to tease out why students might consider the 

science courses more attractive than other alternative electives.  Determining 

that will require further research: probably qualitative research.  
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AE6.  As a vocational / technical school, this site could be particularly 

fertile for mathematics and science and the opposite might be the case for 

English and social studies. 

 To the extent that students need to take academic electives, this 

explanation is very relevant.  Certainly students who are more technically inclined 

might be less interested in taking English, social studies, etc.  While other 

electives, such as art and music, or other vocational and technical electives, like 

culinary, computer aided design, etc, might also be appealing, they would not 

fulfill their transcript requirement for academic courses.   
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CHAPTER 5: DISCUSSION 

The Research Questions 

The first three research questions related to the documentation and 

description of the science program at the school under study.  These questions 

were: 

• What is the new science sequence and how is it unique? 

• What are the new physics curricula and how are they unique? 

• What is algebra-based 9th grade physics and how is it taught? 

The overall objective of these three questions was to supply enough 

information that another school could implement this program.  The 

documentation requested in these questions was furnished in the Results section 

and the Appendixes of this dissertation.  Together, the answers to these three 

research questions supply enough information that a capable school could begin 

the implementation of this program.  However, it would still be challenging for 

most schools to proceed with this information alone. 

Additional support that would help schools who chose institute this 

program would be the completion of the textbook that is being written as well as 

a laboratory manual that would describe experiments that would support the 

launch of the new courses.  While work on those, and other materials, will 

continue, their completion was beyond the scope of this dissertation. 

The last three research questions represented different approaches to try 

to get the answer to the overriding question: is this program having a positive 

effect on math and science achievement in the school?   
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• How does the AP performance of the students in this program compare to 

that of students in other New Jersey schools? 

• How does the HSPA math performance of the students in this program 

compare to that of students in other New Jersey schools and to their 

Language Arts HSPA performance? 

• What are the trends in the participation rate in science electives?  

The answers to all three of these research questions were positive and 

consistent with what would have been anticipated if the program were functioning 

as expected.  The answer to each of these questions contributed towards 

answering the bigger question regarding the program�s effectiveness.  Not only 

were the answers positive, they were also in keeping with what was predicted 

based on the nature of program and the manner in which it was established.   

For instance, the AP participation rates for each of the science courses 

are growing as would be expected as students move through the program; with 

physics the largest, followed by chemistry then followed by biology.  The 

consistency between the theoretical outcomes of the program and the data 

obtained from this study reinforces the data�s validity. 

While no single set of data can prove that this program is effective: the 

combination of all the data that were obtained in answering these research 

questions strongly supports the idea that it is having a positive effect.  However, 

as was noted in each section in which those results were furnished, there are 

alternative explanations for each of them.  In general, the changes that occurred 

at the school during the implementation of the program and the fact that the data 
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necessarily related to these changing cohorts with time makes it difficult to 

determine if the program was the cause of the results that were reported.  There 

are specific alternative explanations that might be the true cause and some 

research ideas that might support, or fail to support them. 

Alternative Explanations and Implications for Future Research 

AE1.  The growth in the Asian population of the school could account for 

improvements in performance in mathematics and science achievement as 

this demographic group has historically performed well in these 

disciplines.   

As was indicated above, supporters of this explanation will have to deal 

with the data that show that the SAT scores of the students in the school showed 

parallel year to year improvements in math and verbal aptitude, while their results 

show rapidly diverging levels of achievement in those areas.  Also, in the later 

years the AP and HSPA data show wide differences in achievement between 

math and science versus English and Social Studies when compared to the 

overall state, while the SAT scores of the students in math and English are both 

similar to each other and just barely above that of the overall state.  Certainly the 

high level of AP performance in math and science and HSPA performance in 

math are not consistent with the small difference in SAT scores.   

While this explanation is consistent with the higher participation rates in 

science electives, it does not seem of sufficient scale to explain those results on 

its own: however, it may be a contributing factor. 
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Also, the demographic shift in the school might be a result not a cause of 

the results of the study.  As the school has performed better, it may be attracting 

students whose culture puts greater emphasis on mathematics and science 

education. 

Future Research  

FR1.  In order to support this explanation, it would have to be shown that the 

SAT was not a good predictor of achievement on AP and HSPA results as 

compared to the racial composition of a school population.  A quantitative study 

of correlations between SAT results; AP performance; HSPA performance; and 

demographic factors would be valuable. 

 FR2.  This explanation could also be tested by instituting this science program at 

a school whose population is stable and of a significantly different demographic 

character.  A study of the outcomes at that new site would either support this 

explanation or not.  

FR3.  The school data could be disaggregated to see if there are demographic 

trends that explain them.  

AE2.  The differential performance between science and mathematics 

versus English and social studies could be accounted for by the growth in 

the Asian and Hispanic population.  Both these groups have a higher 

proportion of students that speak English as a second language and may 

have weaker performance in subjects that require English language skills.   

This explanation is very similar to AE1, but is based on the issue of 

language rather than race.  It faces some of the same problems with regard to 
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the SAT data, but less so in some instances.  On the one hand, if a student has 

difficulty on AP English or social studies tests or the Language Arts HSPA due to 

their language, one would expect that they would also have trouble on the SAT 

Verbal test: but these students scored above the state average on that test.  

Also, none of the students in the school require, or receive English as a Second 

Language (ESL) support.  This would certainly argue that there is not a serious 

language problem at the school.   

On the other hand, it is possible that students might be able to perform in 

a second language but not be as attracted to subjects that require them to do so.  

Thus, the participation rates on electives could be better explained by this than 

by AE1.   

Future Research  

FR4.  In order to support this explanation, it would have to be shown that the 

SAT was not a good predictor of achievement on AP and HSPA results as 

compared to the first language of a school population.  A quantitative study of 

correlations between SAT results; AP performance; HSPA performance; and first 

language would be valuable.  This might be done in conjunction with FR1. 

 FR5.  This explanation could also be tested by instituting this science program at 

a school whose population is stable and of a significantly different linguistic 

character.  A study of the outcomes at that new site would either support this 

explanation or not.  This might be done separately or in conjunction with FR2. 
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FR6.  The school data could be disaggregated to see if there are linguistic trends 

that explain them.  This might well be combined with FR3. 

AE3.  Outside factors in the community or internal factors, such as the 

influence of guidance counselors, etc. could be playing a role.   

This is likely a factor in the complete explanation; the question is whether 

it is a cause or effect: it may well be both.  If the science and math programs 

were not considered to be unusually good at the school, there is no reason to 

expect that the four guidance counselors at the school would steer their students 

to it more than would be the case in schools across the state or from year to 

year.  The same would apply to other outside influences such as parents, 

siblings, friends, etc.   

The comparisons to the state and from year to year require an explanation 

as to why these influencers have decided to encourage students in the direction 

of taking more science courses and more science and math AP courses.  Even 

given that, one would still need to explain why the students, once in the courses, 

perform so well in them.  Just because students are encouraged to do something 

does not mean that they will do it; and it certainly does not mean that they will do 

it well.  Also, this would still leave the HSPA scores left to explain.  If the students 

were taking these courses that would not necessarily affect their HSPA results 

unless the courses were effective. 

On the other hand, this could well be a supporting explanation: once the 

program was proving effective the students in the school would be drawn to the 

program at the same time as guidance counselors, friends and other influencers 
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would push them in that direction.  This would support the underlying trend and 

would represent a beneficial cycle.   

Future Research  

FR7.  Research that would support, or fail to support this explanation would be 

qualitative in nature.  Interviewing parents, guidance counselors and students at 

this and other sites might reveal differences in what is being promoted by the 

community, inside and outside the school. 

AE4.  Apparently high performance in mathematics and science as 

compared to English and social studies could reflect weakness in the 

English and social studies programs and/or the faculty in those 

departments rather than strengths in the science and mathematics 

program.     

This explanation is supported by the differential results between English 

and social studies versus science and mathematics.  To the extent that only the 

differences in performance between those areas were considered, this 

explanation would be plausible.  It is also most likely a factor in any complete 

explanation.  However, it fails to explain the very high levels of student 

achievement in mathematics and science compared to the state.  It seems 

unlikely that students are achieving AP and HSPA results that are so far above 

the state level in mathematics and science because their English and social 

studies programs are weak.   

Future Research  
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FR8.  A new English and social studies program could be instituted at the current 

site: a program that would follow the approach used in the current mathematics 

and science program.  Changes in student achievement in the areas of English 

and social studies as well as in science and mathematics would support, or fail to 

support, this explanation and/or the hypothesis of this study.  Since there would 

be significant interactions, especially in participation rates, this study would be 

both rich and complex to interpret.  But its implications would be important for 

education in all of these disciplines.    

AE5.  The performance of the mathematics and science program might be 

due to other strengths in those programs, not related to the hypothesis, or 

it could be due to the strength of the science and math faculty.   

It will always be difficult to tease out the reasons for a program�s success 

or failure.  Certainly any program that is implemented poorly and by an 

incompetent faculty will fail. Similarly, even a poorly designed program based on 

a badly thought out theory could be made successful by a sufficiently talented 

faculty and by exceptionally competent implementation.  The faculty will simply 

adjust what they do in the classroom to make it work: what is done in the 

classroom might not match the theory at all.  As a result, there will always be an 

interaction between the effects due to the competence of the staff and the theory 

being expressed in the program. 

 Future Research  

FR9.  A qualitative study of the students at the current site as to their perceptions 

of what they experienced in their courses and to what they ascribe their 
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successes and failures.  A well-designed study should address the questions as 

to whether what occurred in the classroom was perceived as consistent with the 

theoretical program design and how students perceived the effectiveness of 

whatever did occur. 

FR10.  If the program is instituted at new sites, a study such as FR9 should be 

conducted, before, during and after its implementation to track changes in 

student perception. 

AE6.  As a vocational / technical school, this site could be particularly 

fertile for mathematics and science and the opposite might be the case for 

English and social studies. 

 Vocational / technical schools are not traditionally associated with high 

academic performance.  While that has continued to be true at this school, with 

respect to English and social studies: it is not the case with respect to science 

and mathematics.  While this explanation makes the case that it might be more 

likely to occur in science and math at a vocational school, it does not explain why 

it happened at all.  It is not clear that any AP courses are offered at any other 

schools of this type in New Jersey.  In that sense, this school is also performing 

well above other schools of its type in the areas of English and social studies: 

just not as well as in mathematics and science. 

 Similarly, the HSPA results of the school would be expected, based on 

this explanation, to be better in mathematics than in language arts: and that is 

the case.  But this does not explain why they are so much better than a typical 
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New Jersey school and those vocational / technical schools that were quickly 

identified. 

 The same questions exist with regard to participation rates in science 

electives: this explanation makes sense as to why they would be high relative to 

other electives, but not why they are so high at all.  In most vocational / technical 

schools, it is challenging to get students to take three years of science; let alone 

1.2 years beyond those three years. 

 So this seems to represent a partial explanation: it may explain why math 

and science are more likely to prosper at a school of this sort as compared to 

English and social studies; but it does not explain why any of them prosper. 

Future Research  

FR11.  Data for all the vocational / technical schools in New Jersey could be 

collected and all the comparisons that were done in this study could be extended 

to that group of schools.  This analysis would very directly either support or fail to 

support this explanation. 

Additional future research 

The present evidence is sufficient and the argument sufficiently plausible, 

that other schools may begin pursuing this same path.  Much has been learned 

by the work at this school; so that path should be easier to find and follow.  Each 

school will have to find its own way to some extent; but the approach and its 

value have been illuminated. 

Even while the current school proceeds with refining its approaches and 

extending them to new subjects; even as new schools begin their own journey; it 
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is critical that research continue into this educational approach.  In the study of 

programs: programs that extend over years; involve hundreds of students; and 

rely upon scores of teachers, it is exceedingly difficult to conduct experiments or 

even quasi-experiments.  However, it is possible to construct a theoretical 

framework and look for evidence that either supports or fails to support the 

plausibility of that framework.  That is what has been done in this study.    

By its nature, that sort of research is both important and limited, almost in 

inverse proportion.  Those limitations can only be addressed by continued study; 

both extensions of the current study as well as new types of studies.  Some 

suggested future research studies were discussed above.  None of these studies 

will be able to �prove� or �disprove� the validity of this educational approach: 

however, these additional studies will increase or decrease its plausibility.  In 

addition to the studies that were discussed above with regard to the alternative 

explanations, there are additional studies that could be done with regard to the 

current hypothesis. 

FR12.  Qualitative research should be done at the current site on student 

perceptions regarding the program in each of the years that they participate in it 

and their first years after graduating.  For example, individual and group 

interviews with students in each of the high school grades as well as their first 

few years of college would be of great value.  It would indicate if the benefits are 

perceived as real by the students while they are participating in the program and 

after they get into college classes with students who were in more traditional high 

school programs. 
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FR13.  Quantitative research will be made possible when New Jersey begins 

tracking the results on the various state examinations: the state is currently in the 

process of creating unique student identifiers and computerizing its data.  Once 

that is done, Value Added Measurement program exist that would allow a 

quantitative analysis of the effect of the program.  This could be used to track the 

program�s effect on not only state exams, but also on AP achievement.  For 

instance, a regression analysis could use the 8th Grade GEPA results to predict 

student achievement on AP Exams as well as the 11th grade HSPA exam the 

effect of participating in this new science and math program, and the significance 

of that effect, could then be evaluated using those data. 

Implications for Instruction 

The importance of this study is not limited to understanding the effect of a 

new scope and sequence, curricula or pedagogy.  It also reflects upon the 

purpose of education and the difference between education and job training; a 

difference that is always importance but perhaps most clearly an issue to those 

of us who work in a vocational / technical school.  Job training is an important 

facet of a school such as ours, but it does not define the purpose of education. 

The purpose of education is to pass along to the next generation their 

rightful inheritance: the mediational tools and knowledge that have been 

developed by their forbearers; forbearers that go back to pre-history; before the 

dawn of time.  Those tools and that knowledge is as much a part of our 

phenotype as are our legs, arms and brain.  However, this part of our phenotype 
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is not passed along by our genes, but rather, by the overarching mediational tool 

of education.  A key genetic breakthrough that propelled our species to its 

prominence in the natural world was the one that allowed us to transcend genetic 

evolution and begin progressing with the speed of sociocultural evolution: a pace 

that makes genetic evolution appear almost like its standing still. 

The mechanism for this is education.  We do not educate our young so 

that they can get jobs; work in fast food restaurants; become physicists; or repair 

cars.  Those outcomes may follow from education, but education was at the root 

of humanity long before those specialized jobs came into existence.   In fact, 

those jobs are just a symptom of the sociocultural progress that drives us 

forward. 

Education has long struggled with the chimera of �relevance�.  The idea 

that each thing we teach our youth must have some direct and immediately 

obvious value to them.  This has been, and always will be, a dead-end.  It leads 

to arguments like, �You need to learn mathematics so you can make change 

when you are working a cash register�: an argument which disappeared with 

cash registers that make change: an argument that never held sway with 

students who were not considering a future of �making change�.  So one 

�relevant� activity after another is seized upon:, and after each of these becomes 

obsolete the teacher is left wondering, �what is the point of all this?� 

There is no end to that type of argument: it is both sterile and bankrupt.  It 

is too specific to apply to many of our youth and quickly becomes outpaced by 

the progress of man: each �relevant� activity becoming irrelevant just months or 
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years later.  The very pace of sociocultural development betrays each of these 

activities to pointlessness. 

Usefulness persists: not the usefulness of making change: the usefulness 

of our sociocultural heritage: the usefulness of mathematics to physics; of 

mathematics and physics to chemistry; of mathematics, physics and chemistry to 

biology.  This is not an ephemeral sort of usefulness: it is fundamental to what it 

is to be human. 

This is not limited to just mathematics and science: the same hierarchy of 

usefulness exists in all learning.  It can be seen in the usefulness of grammar to 

writing; of writing and grammar to history; of grammar, writing and history to 

social policy; or their usefulness to writing a novel; etc.  In a well organized 

educational community all of this heritage should come together as the 

connections between English, social studies, mathematics, science, art, music, 

etc. are made: the excitement of our students would rise ever higher: these 

connections are what they were born to make: these are what make us human. 

This study was limited to exploring the dramatic impact of reintegrating a 

curriculum of study in mathematics and science so that the usefulness of learning 

was brought to bear in those realms; so that the usefulness of that learning was 

made visible; where the pedagogy used was appropriate to the sociocultural 

mediational tools being taught.  The school that is experimenting with making 

these connections has made significant progress even with what has been done 

so far in just those realms.  This will only multiply in effect as this approach is 
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incorporated more effectively in and between more disciplines making an 

increasing number of connections at a geometric pace.   
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 APPENDIX A: PHYSICS HONORS CURRICULUM 

PHYSICS HONORS 

Course Description 

This course represents the first year in a comprehensive two year 

sequence of Algebra/Trigonometry based physics.  The text used is Physics by 

Douglas C. Giancoli.  This first course is comprised of Mechanics, which is 

studied for the first half of the year, Electricity and Magnetism, which is studied 

for most of the rest of the year and, finally, Fluids, to conclude the year. 

The order of the topics taught during the two years has been geared to 

use and reinforce the mathematics that the students are studying.  For this 

reason, the first year is geared towards reinforcing skills in algebra and requires 

no trigonometry.  This is accomplished by restricting the first year course to 

problems that can be simplified to one-dimensional form.  While vectors are 

introduced, they are only added and subtracted in one dimension at a time.  This 

allows students to do about 90% of the problems presented in the portions the 

text being taught.  Connections are also developed between the analysis of 

motion and graphical analysis, collision problems and the solving of systems of 

equations, etc. 

The second year course begins with a brief review of that same material 

while introducing multi-dimensional problems, through the addition and 

subtraction of vectors in two and three dimensions.  This is coordinated with the 

student�s study of trigonometry.   
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Throughout both years, instruction will be carried out using a social 

constructivist approach.  New concepts, techniques and approaches will be 

presented to the students at the start of class.  Students will then be involved in 

problem-solving activities on an individual, small group and large group basis for 

most of the class.  Through a large degree of teacher-student and student-

student interaction students will be helped in constructing their own deep 

understanding of physics.  This will include the ability to ability to read and 

understand problems, break them down into their component parts and then 

create and present solutions.   

These same skills will be developed with activities in the physics 

laboratory.  In that case, problem solving will be done in real time with hands-on 

problems.  Much of the work done in the laboratory will include the gathering of 

data through PASCO electronic sensors.  Those data will be configured by the 

students using the PASCO software and then analyzed using that software as 

well as a number of compatible programs, including Word and Excel.  Through 

this process both analytical techniques as well as technological capability will be 

developed.  

Students who have successfully completed this course should move onto 

Physics AP B.  They will take the Physics AP B examination at the end of that 

course. 
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Course Objectives 

 

1.  Objectives NJCCCS 

2.  Define and contrast position, distance and speed. 5.7A 

3.  Use an inquiry approach to construct new 
understanding. 5.1A, 5.1B 

4.  
 Read and interpret �word problems�. 5.1B 

5.  Use algebraic techniques to solve for unknown 
values. 5.3A, 5.3C 

6.  Solve literal equations. 5.3C 

7.  Participate productively in large group discussion, 
inquiry and problem solving. 5.1A, 5.1B 

8.  Participate productively in small group discussion, 
inquiry and problem solving. 5.1A, 5.1B 

9.  Solve problems involving the relationship between 
position, distance and speed. 5.7A, 5.1B, 5.3C 

10.  Compare and contrast speed vs. velocity as well as 
distance vs. displacement. 5.7A 

11.  Define acceleration as the change in velocity over 
time. 5.7A 

12.  Use motion diagrams to analyze problems. 5.7A, 5.1B 

13.  
Develop the kinematics equations that give the 
relationship between displacement, velocity and 

acceleration. 
5.3B, 5.3C, 5.7A, 

14.  Employ kinematics equations to solve problems for 
one-dimensional motion with constant acceleration 5.3C, 5.1B, 5.7A 

15.  Conduct dimensional analysis. 5.1B 

16.  Compare and contrast the approaches of Galileo and 
Aristotle. 5.2A, 5.2B, 5.7A 

17.  Use hypothetico-deductive reasoning to develop and 
test predictions. 5.1A, 5.1B 

18.  Obtain data from an experiment. 5.1A, 5.1B 

19.  Use conventional laboratory equipment such as 
stopwatches, balances, etc. 5.1A, 5.1B 

20.  Record and look for patterns in data. 5.1A, 5.1B 
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21.  Construct a graph with correctly formatted and labeled 
axes. 5.3D 

22.  Graph data. 5.1B, 5.3D 

23.  Analyze and interpret graphical data. 5.1B, 5.3D 

24.  Discuss the historical impact of Galileo and his 
persecution by the church. 5.2A, 5.2B 

25.  Define and apply Newton�s Laws of motion. 5.7A 
26.  Draw free body diagrams. 5.7A 
27.  Contrast mass, force, and weight. 5.7A 

28.  Use computerized laboratory equipment such as that 
provided by Pasco. 5.1B, 5.3D 

29.  

Construct free-body diagram for various physical 
systems to determine the forces on and the 

acceleration of the systems, for both rectilinear and 
uniform circular motion. 

5.7A 

30.  Use scientific notation. 5.1B 

31.  Determine the gravitational force between massive 
objects. 5.7A 

32.  
Determine the work done on a physical system when 

the net force acting on it and its displacement are 
known. 

5.7B 

33.  Use energy bar charts to solve problems. 5.1B 

34.  Employ the work/energy theorem to determine the 
motion of an object. 5.1B 

35.  
Define and contrast kinetic and potential energy and 

distinguish between different forms of potential 
energy. 

5.7B 

36.  Recognize when total mechanical energy is and is not 
conserved. 

Beyond core 
standards 

37.  Employ energy conservation to determine the position 
and motion of an object. 

Beyond core 
standards 

38.  
Determine the impulse on a physical system when the 

forces on the system, and the time interval these 
forces act, are known. 

Beyond core 
standards 

39.  Use the impulse/momentum relation to determine the 
motion of a physical system 

Beyond core 
standards 

40.  Use momentum bar charts. Beyond core 
standards 

41.  Define and contrast elastic and inelastic collisions. Beyond core 
standards 
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42.  Solve simultaneous equations. 5.3C 

43.  
Employ momentum conservation to determine the 

outcomes of collisions between the elements of the 
physical system. 

Beyond core 
standards 

44.  State the two types of electric charge, their sources, 
and how they interact. 5.7.A, 5.6A 

45.  Define and contrast insulators and conductors. Beyond core 
standards 

46.  Describe the process of charging by conduction and 
induction. 

Beyond core 
standards 

47.  Employ Coulomb�s Law to determine the electrostatic 
forces between two or more electric charges. 

Beyond core 
standards 

48.  Use and understand the appropriate prefixes: pico; 
nano; micro; milli; centi; kilo; and mega. 5.1A 

49.  Define an electric field, and contrast it with 
electrostatic force. 

Beyond core 
standards 

50.  
Construct electric field lines for various charge 
distributions in both homework and laboratory 

exercises. 

Beyond core 
standards 

51.  Define electrostatic potential, and potential difference. Beyond core 
standards 

52.  Use electronic laboratory equipment including 
voltmeters, ammeters, power supplies, etc. 5.1B 

53.  

Calculate the potential at points in the vicinity of one 
or more electric charges, and determine the work 

done by an electric field to move a test charge from 
one point to another. 

Beyond core 
standards 

54.  
Construct equipotential lines for various charge 
distributions in both homework and laboratory 

exercises. 

Beyond core 
standards 

55.  
Determine the capacitance of a parallel plate 

capacitor with, or without a dielectric, given the charge 
on plates, and the voltage across them. 

Beyond core 
standards 

56.  Define and contrast voltage, current, resistance. Beyond core 
standards 

57.  
Employ Ohm�s Law to determine the voltage, current, 

and resistance of series and parallel DC circuits in 
both homework and laboratory exercises. 

Beyond core 
standards 

58.  
Determine the resistance of a DC circuit element 

when its composition, dimensions, and temperature 
are known. 

Beyond core 
standards 
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59.  
Calculate the power generated and dissipated by 

various DC circuit elements when current, voltage, 
and resistance are known. 

Beyond core 
standards 

60.  
Determine the voltage and the charge on capacitors 
connected in series and in parallel combinations in a 

complete DC circuit. 

Beyond core 
standards 

61.  Determine the emf of a power supply in a DC circuit 
that has an internal resistance. 

Beyond core 
standards 

62.  Map magnetic field lines in the vicinity of one or more 
magnets. 

Beyond core 
standards 

63.  
State how the direction of the magnetic field is 

determined for fields generated by ferromagnetic 
materials, and electric currents. 

5.7A 

64.  Map magnetic field lines in the vicinity of electric 
current. 

Beyond core 
standards 

65.  
Calculate the strength of the magnetic field at a point 
in the vicinity of a straight wire or solenoid, and their 

directions using the right-hand rule. 

Beyond core 
standards 

66.  
Determine the magnitude and the direction of force on 
an electric charge moving perpendicular to a uniform 

magnetic field. 

Beyond core 
standards 

67.  Calculate the magnitude and direction of force 
between two current carrying wires. 

Beyond core 
standards 

68.  Define magnetic flux through a surface. Beyond core 
standards 

69.  

Employ Faraday�s Law to determine the emf around a 
closed loop of wire when the flux changes due to 

change in field strength, or the orientation or size of 
the closed loop. 

Beyond core 
standards 

70.  
Explain the operation of motors, generators and 

galvanometers and their development with respect to 
Faraday�s work. 

5.4B 

71.  
Explain how transformers work in AC circuits, and 

how they are advantageous in transmitting currents 
over long distance. 

5.4B 

72.  Define a fluid as being either a gas or liquid. Beyond core 
standards 

73.  Apply the relationship between density, volume and 
mass. 

Beyond core 
standards 

74.  Apply the relationship between density and specific 
gravity. 

Beyond core 
standards 

75.  Apply the relationship between force, applied area 
and pressure. 

Beyond core 
standards 
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76.  Differentiate between absolute and gauge pressure. Beyond core 
standards 

77.  Determine the pressure at a given depth in a fluid. Beyond core 
standards 

78.  Determine the apparent weight of an object in a fluid. Beyond core 
standards 

79.  Apply Pascal�s principle to create simple machines. Beyond core 
standards 

80.  Develop an experiment to test a theory. 5.1A, 5.1B 
81.  Conduct an experiment to test a theory. 5.1B 

82.  Exercise proper safety precautions when conducting 
experiments. 5.1C 

83.  Properly use significant figures in calculations. 5.3D 

84.  
Estimate the error of actual measurement and 

recognize the importance of error calculations in 
science. 

5.1A 

85.  Share responsibilities in conducting experiments and 
collaborate to get the best results. 5.1A 

86.  Share information and techniques with other groups 
doing related studies in order to work more efficiently. 5.1A 

87.  Evaluate the results of experimental investigations. 5.1A, 5.3D 

 

Course Content Outline 

1. One- Dimensional Kinematics  

a. Motion in one dimension 

b. Vectors vs. scalars 

c. Displacement vs. Distance 

d. Velocity vs. Speed  

e. x = x0 + v0t + ½ at2  

f. v = v0 + at 

g. v2 = v0
2 + 2 a ∆x 
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2.  Dynamics 

a. Aristotelian World View 

b. Galilean view 

c. Newton�s Laws 

d. Free body Diagrams 

e. The independence of parallel and perpendicular forces 

f. Gravity near the earth�s surface and �g� 

g. Mass versus weight 

h. The use of ΣF = ma and free body diagrams to solve problems 

i.   Friction force � solving problems involving the interaction of 

horizontal and vertical forces 

3.  Circular Motion 

a. Net force required for circular motion equals mv2/r 

b. Application of Free Body diagrams and Newton�s Laws to circular 

motion 

c. Universal gravitation 

d. Satellites and �weightless� 

e. Kepler�s Laws and Newton�s Synthesis 

4.  Linear Momentum 

a. Momentum and its relation to force 

b. Conservation of momentum 

c. Collisions and Impulse 
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d. Solving problems using the conservation of energy and momentum 

in collisions 

e. Elastic collisions in one dimension 

f. Inelastic collisions in one dimension 

 

5.  Work and Energy 

a. Work done by a constant force. 

b. Kinetic Energy and the Work-Energy Principle 

c. Gravitational Potential Energy 

d. Elastic Potential Energy 

e. Internal Energy and Joule�s Principle 

f. Conservative and non-conservative forces 

g. Problem solving with the Principle of Conservation of Energy. 

6.  Electric Charge and Electric Field 

a. Electric charges and its conservation 

b. Interactions of charges 

c. Induced charges; the electroscope 

d. Coulomb�s Law 

e. Electric field  

7.  Electric Potential 

 a.  Electric potential and potential difference 

 b.  Relation between electric potential and field 

 c.  Equipotential lines 
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 d.  Capacitance 

 e.  Dielectrics 

 f.  Storage of Electric energy 

8.  Electric Currents 

a. The electric battery 

b. Electric current 

c. Ohm�s and Kirchoff�s Laws 

d. Resistivity 

e. Superconductivity 

f. Joule�s Law and Electric Power 

g. Alternating current 

h. Power in household circuits 

9.  DC Circuits 

a.  Resistors in series and in parallel 

b.  EMF and terminal voltage 

c.  Kirchoff�s Rules: the conservation of charge and of energy 

d.  EMF�s in series and in parallel 

e.  Circuits with capacitors in series and in parallel 

f.  Circuits with a resistor and a capacitor 

10.  Magnetism 

a. Magnets and magnetic fields 

b. Electric currents produce magnetic fields 

c. Force on an electric current in a magnetic field 
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d. Motion of the charged particle in a magnetic field (Lorenz force) 

e. Magnetic field due to a straight wire 

f. Force between parallel wires 

11.  Electromagnetic Induction 

a. Induced EMF 

b. Faraday�s Law 

c. EMF induced in a moving conductor 

d. Changing magnetic flux produces and electric field 

e. Electric generators 

f. Conversion of mechanical to electric energy as the underlying basis 

to modern technological society 

g. Electromagnetic waves 

12.  Fluid Statics 

a. Density and Specific Gravity 

b. Pressure in Fluids 

c. Atmospheric and Gauge Pressure 

d. Pascal�s Principle 

e. Barometers 

f. Buoyancy and Archimedes�s Principle 
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Course Assessment 

Formative assessments are done by the teacher in order to assure that 

the students understand the material that has been taught.  They create a 

feedback loop between the students and the teacher so that misunderstandings 

can be corrected and instruction modified to optimize the learning environment.   

These formative assessments occur during class and can be divided into 

two categories.  The first category is ungraded and consists of student 

participation, student responses to questions, observed student-student 

interactions and homework completion 

The second type of formative assessment is graded and consists of 

quizzes, based on previously discussed homework assignments; quests, which 

are full period assessments that check a broader set of problems at the same 

level of difficulty as quizzes; and reading quizzes, which check to see if students 

have been completing reading assignments. Altogether these assessments 

represent about 20 - 30 % of the marking period grade. 

Summative assessments take the form of chapter tests, midterms and 

finals.  These are all given in the same form as the AP exam; half multiple choice 

and half free response.  The multiple choice questions are conceptual in nature 

while the free response section involves solving multi-step problems; often taken 

from prior AP exams.  Chapter tests comprise about 50 - 60% of each marking 

period grade. The midterm and final exam each represent 10% of the full year 

grade; combined they equal a marking period grade.  
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The intention is for identical summative assessments to be given to all the 

students in the course on the same day, regardless of their teacher.  This is to 

encourage students to study together in groups, with or without a teacher, to 

advance their skill and understanding..   

Laboratory work is graded and typically represents about 20% of each 

marking period grade.  The grade is divided evenly between the work done in the 

lab, based on teacher observation, and the lab report.   

Methodology 

Lecture 

Use of this method will be limited to the introduction of new topics and will 

be of short duration, no more than 10 minutes in one class period. Concepts will 

generally be developed through class discussion with the teacher serving the role 

of moderator and recorder rather than lecturer.  Many classes will not include this 

component at all.  The students will need to use their visual, listening, writing 

skills and organization skills to benefit from this part of the course. Students will 

be required to keep complete and organized notebooks 

Large group Problem Solving and Discussion Sessions 

The teacher will lead these sessions where students will actively 

participate in raising questions, answering questions and expanding upon topics.  

The entire class will work together to solve complex problems which test their 

understanding of the ideas being developed.  The teacher will coordinate these 

sessions to ensure that all the students participate.  This is vital in that this gives 

each student the opportunity to expand their understanding.  By increasing the 



 254

Zone of Proximal Development (ZPD) for all the students, they will be able to 

quickly advance their understanding. 

Small Group Problem Solving Sessions 

In these sessions a few problems will be given to the entire class and they 

will work in groups of 2 to 4 students to solve them.  Once most of the problems 

have been solved, each group will present a solution to one of the problems to 

the rest of the class.  Disputes and different approaches will be discussed in the 

Large Group format with the class taking the lead in determining the best 

approach.  The teacher serves to chair the discussion.  Once again this activity is 

designed to allow the students to quickly learn in an environment where their 

ZPD has been expanded. 

Hands-On Activities / Laboratory / Discovery 

Students need to not only solve problems analytically but also apply those 

solutions to real hands-on problems.  These sessions are generally, but not 

exclusively, held in the physics laboratory and involve two to four students 

working together.  The students will be asked to conduct experiments that either 

apply or develop new understandings.  These will not be cookbook experiments, 

where the students simply walk through a procedure.  Rather, these experiments 

involve gathering data and making analyses where the results are unknown to 

them, and sometimes even to the instructor.  

These labs will use actual physical apparatus, often with electronic probes 

to gather data and computers to conduct analysis.  Whenever possible, they will 

be performed towards the beginning of each unit, affording the student the 
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experience of discovering the concepts before they are formally taught by the 

instructor. One objective of each lab exercise is for each student to analyze their 

data using data and error analysis techniques in order to judge the accuracy and 

meaning of their results. 

Reading 

Students will be encouraged to develop the self-confidence and 

techniques required to learn directly from the text.  The techniques needed to 

accomplish that will be discussed in class and reviewed from time to time.  

Readings will be assigned to either introduce or reinforce topics.  In this way, 

classroom time is not spent reviewing every fact and detail for which the students 

will be responsible.  Students will then be better prepared to participate and 

engage in active classroom discussion.  The skill of being able to read and 

understand a text is so critical that great effort will be made to encourage 

students to develop it.  In this vein, reading quizzes will be given from time to 

time to determine that students are completing their reading assignments. 

Homework problems 

Problems will be assigned every night so that students can apply the learning 

that was done during class that day.  This will be checked by periodic homework 

quizzes that will be given the day after the assignment was due.  In that way, 

student who made an honest effort but need to ask questions in class to reach a 

correct solution are not penalized.  The homework quizzes are designed to test 

that students are learning how to do these problems.  This contrasts with 

collecting assignments, which can lead to copying rather than understanding. 
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Field Trips 

Appropriate trips out of the school environment are an excellent way to show 

students that what they learn in classroom definitely relates to the word at large. 

Students are given a chance to see how ideas develop into real life situations 

and have real-life applications.  

Resources 

Physics: Principles with Applications 

Douglas C. Giancoli 

ISBN: 0136119719 

Format: Hardcover, 1096pp 

Pub. Date: August 1997 

Publisher: Prentice Hall 

Edition Description: 5TH 

This best-selling algebra-based physics book has been widely known for 

its carefully crafted exposition, strong biological applications, and high degree of 

accuracy and precision. The Fifth Edition maintains these strengths and brings a 

conceptual emphasis and real-world flavor to the examples, problems, and art 

program. In addition, the new edition features an unparalleled suite of media and 

on-line resources to enhance the physics classroom.  

Additional Textbook: Beiser, A., Physics, 5th edition, Addison Wesley 1991 

Laboratory Software: PASCO  
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APPENDIX B: AP PHYSICS B CURRICULUM 

 

                                                       AP PHYSICS B 

Course Description 

AP Physics B is the second of a two-year sequence that is designed to 

prepare students to take the AP Physics B examination.  It begins by integrating 

the use of trigonometric functions into the Physics Honors topics of mechanics 

and electricity & magnetism.  This allows students to solve problems with vectors 

that are oriented at arbitrary angles; rather than just parallel or perpendicular to 

one another.  The course then addresses the topics of waves; sound; 

thermodynamics; geometrical optics; wave optics; as well as introductory atomic 

& nuclear physics.  

This course emphasizes problem solving in the context of the principles of 

physical laws and principles; as well as the ability to apply that knowledge and 

skill to phenomenon in either an experimental or theoretical setting. Great 

attention is given to strengthening and reinforcing the natural connections 

between the sciences and with mathematics.  

Proper preparation to take this course includes the completion of Physics 

Honors and Algebra I.  While it is best if Geometry is completed prior to the start 

of this course; it is possible to take it in parallel if the student is able to commit 

additional time and effort. 

Students will be involved in problem-solving activities on an individual, 

small group and large group basis.  Through this process the ability to read and 
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understand problems, break them down into their component parts and then 

create and present solutions will be developed.   

These same skills will be developed with activities in the physics 

laboratory.  In that case, problem solving will be done in real time with hands-on 

problems.  Much of the work done in the laboratory will include the gathering of 

data through PASCO electronic sensors.  Those data will be configured by the 

students using the PASCO software and then analyzed using that software as 

well as a number of compatible programs, including Word and Excel.  Through 

this process both analytical techniques as well as technological capability will be 

developed. 

Course Objectives 

Course objectives that were previously achieved in the prerequisite 

course, Physics Honors, are not duplicated below.  However, the reviews of 

specific categories of content from the prior course are included below: 

accomplishing those reviews must be considered as objectives of this course.  

However, process objectives, such as laboratory techniques, group discussion, 

etc. which were noted in the objectives for Physics Honors are not repeated 

below as those will not require explicit review: they will be reviewed implicitly 

through their use. 

 Objectives NJCCCS 

1.  Review the kinematics from Physics Honors (see that 
curriculum). 5.7A 

2.  Decompose vectors into perpendicular components. Beyond Core 
Standards 

3.  Compose vectors from its perpendicular components. Beyond Core 
Standards 
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4.  Add or subtract multiple vectors, oriented at arbitrary 
angles, using either graphical or analytical methods. 

Beyond Core 
Standards 

5.  Review dynamics from Physics Honors (see that 
curriculum). 5.7A 

6.  Determine the net force due to multiple forces at 
arbitrary angles. 5.7A 

7.  Determine the acceleration of an object due to multiple 
forces acting on it at arbitrary angles. 5.7A 

8.  Review energy from Physics Honors (see that 
curriculum). 5.7B 

9.  Determine the work done on a system when a net force 
acts on it at an arbitrary angle to its displacement. 5.7B 

10.  
 

Employ the work/energy theorem to determine the 
motion of a physical system in two dimensions. 5.7B 

11.  Apply the concept of impulse to solve problems in two 
dimensions. 5.7A 

12.  Solve problems involving perfectly inelastic collisions of 
objects whose velocities are at arbitrary angles. 5.7A 

13.  Solve problems involving perfectly elastic collisions of 
objects whose velocities are at arbitrary angles. 5.7A 

14.  Solve problems involving inelastic collisions of objects 
whose velocities are at arbitrary angles. 5.7A 

15.  Review the fluid statics from Physics Honors (see that 
curriculum). 

Beyond Core 
Standards 

16.  Use Bernoulli�s Principle to describe the relationship 
between pressure, height and fluid velocity. 

Beyond Core 
Standards 

17.  
Apply Bernoulli�s Principle to solve problems involving 

the relationship between pressure, height and fluid 
velocity. 

Beyond Core 
Standards 

18.  Use the concept of torque to solve for the static 
equilibrium of a system. 

Beyond Core 
Standards 

19.  Define the criteria of an oscillating body exhibiting simple 
harmonic motion. 5.7B 

20.  Determine the energy, position, speed, acceleration, 
frequency, and period of a physical system. 5.7A, 5.7B 

21.  Define and contrast longitudinal and transverse waves, 
and give at least one example of each. 

Beyond Core 
Standards 

22.  Use ray diagrams to solve problems in geometric optics. Beyond Core 
Standards 

23.  Define reflection, refraction, diffraction, and interference Beyond Core 
Standards 

24.  Determine the overtone series for vibrating strings and 
pipes. 

Beyond Core 
Standards 
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25.  Determine the apparent frequency of a sound source 
moving with respect to an observer. 

Beyond Core 
Standards 

26.  Determine the beat frequency of a system of two 
resonators of different frequencies. 

Beyond Core 
Standards 

27.  
Employ the kinetic theory of matter to explain 

temperature, thermal expansion, heat transfer, and the 
attributes of an ideal gas. 

Beyond Core 
Standards 

28.  Determine the expansion of materials of known initial 
dimensions when they undergo a temperature change. 

Beyond Core 
Standards 

29.  Employ the ideal gas law to determine the pressure, 
volume, and temperature of an ideal gas. 

Beyond Core 
Standards 

30.  Define and contrast heat, temperature, and internal 
energy. 

Beyond Core 
Standards 

31.  Describe James Joule�s determination of the mechanical 
equivalent of heat, and its numerical value. 5.2B 

32.  

Employ energy conservation to determine the specific 
and latent heats of various substances Define and 
contrast conduction, convection, and radiation as 

methods of heat transfer. 

Beyond Core 
Standards 

33.  Calculate the rate of heat transfer between two objects 
for both conduction and radiation. 

Beyond Core 
Standards 

34.  Define and contrast isobaric, isochoric, isothermal, and 
adiabatic thermal processes. 

Beyond Core 
Standards 

35.  

Employ the first law of thermodynamics to determine the 
temperature, pressure, and volume of an ideal gas that 
undergoes isobaric, isochoric, isothermal, and adiabatic 

processes. 

Beyond Core 
Standards 

36.  Use the second law of thermodynamics to explain why 
no heat engine can be100% efficient. 5.7B 

37.  Calculate the efficiencies of various heat engines when 
the intake and exhaust temperature are known. 

Beyond Core 
Standards 

38.  Describe how the increase in entropy affects all physical 
phenomena. 5.7B 

39.  Review electrostatics from Physics Honors (see that 
curriculum). 5.7A 

40.  
Employ Coulomb�s Law to determine the electrostatic 

forces between three or more electric charges located at 
arbitrary angles to one another. 

Beyond Core 
Standards 

41.  Add electric fields which are oriented at arbitrary angles 
to one another. 

Beyond Core 
Standards 

42.  Review magnetism from Physics Honors (see that 
curriculum). 

Beyond Core 
Standards 

43.  Add magnetic fields which are oriented at arbitrary 
angles. 

Beyond Core 
Standards 
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44.  Determine the force on a current carrying wire oriented 
at an arbitrary angle to a magnetic field. 

Beyond Core 
Standards 

45.  Determine the force on a charged object whose velocity 
is at an arbitrary angle to a magnetic field. 

Beyond Core 
Standards 

46.  Determine the force current carrying wires oriented at an 
arbitrary angle to each other. 

Beyond Core 
Standards 

47.  Identify the complete electromagnetic spectrum and be 
able to list its components in order of frequency. 

Beyond Core 
Standards 

48.  Relate the speed of wave with its frequency and 
wavelength. 

Beyond Core 
Standards 

49.  Relate a transparent material�s index of refraction to the 
speed of light in the material. 

Beyond Core 
Standards 

50.  
Determine the position, size, and type of images 

generated by both spherical mirrors and thin lenses by 
both ray tracing and calculation. 

Beyond Core 
Standards 

51.  Use Huygen�s Principle to explain the diffraction of light 
waves. 

Beyond Core 
Standards 

52.  Explain Young�s Double Slit experiment and its 
implications regarding the wave nature of light. 5.1A, 5.2B 

53.  
Use Young�s experimental set up to determine the 

wavelength of light in both homework and laboratory 
exercises. 

Beyond Core 
Standards 

54.  Explain the principle of dispersion. Beyond Core 
Standards 

55.  Determine the width of the central maximum formed 
from single slit diffraction. 

Beyond Core 
Standards 

56.  Use a diffraction grating to determine the wavelength of 
light. 5.1B 

57.  Determine the thicknesses of thin films and air wedges 
from knowing the wavelength of the reflected light. 5.1B 

58.  Determine the intensity of light that is passed through 
one or more polarizing filters of known orientation. 

Beyond Core 
Standards 

59.  Explain how Plank�s quantum hypothesis explains the 
spectrum of black body radiation. 5.1B 

 

Course Outline 

1.  Kinematics  

a. Decomposition of vectors 

b. Composition of vectors 
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c. Review - Motion in one dimension 

d. Motion in two dimensions (Independence of perpendicular components) 

e. Displacement in two dimensions 

f. Velocity in two dimensions 

g. Acceleration in two dimensions 

h. Projectile motion 

i. Review - Uniform circular motion 

j. Review - Motion of the satellites 

2. Dynamics 

a. Review - Newton�s Laws 

b. Free body diagrams in two or three dimensions 

c. Determining the net force due to forces acting at arbitrary angles 

d. Decomposing forces into perpendicular components 

e. Friction when an applied force is at an arbitrary angle 

f. Net force due to a banked curve 

g. Review - Elastic force 

h. Review - The Law of Universal Gravitation 

3. Rotational Motion 

a. Torque 

b. Static equilibrium due to equal and opposite torques 

4. Impulse and Momentum 

a. Review - Impulse and momentum 

b. The effect of impulse at an arbitrary angle to initial velocity 
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c. Review � Collisions: Perfectly elastic, perfectly inelastic, inelastic 

d. Perfectly inelastic collisions of objects moving in arbitrary directions 

e. Perfectly elastic collisions of objects moving in arbitrary directions 

f. Inelastic collisions of objects moving in arbitrary directions 

g. Conservation of momentum with objects moving in arbitrary directions 

5.  Energy 

a. Review � Work, Energy and Power 

b. Work when force and displacement are at arbitrary angles 

6.  Thermodynamics 

a. Ideal Gas Law  

b. Kinetic Model 

c. Zeroth Law of Thermodynamics (Thermometry) 

d. First Law of Thermodynamics (Energy Conservation) 

e. Second Law of Thermodynamics (Entropy)  

f. P-V diagrams 

g. Mechanical Equivalent of Heat 

h. Specific and Latent Heat (Calorimetry) 

i. Heat transfer and thermal expansion 

7.  Electricity 

a. Review - Electric charges and their interaction 

b. Review - Electric field intensity 

c. Review - Potential and Voltage 

d. Review - Capacitance and Capacitors 
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e. Adding electric fields at arbitrary angles 

f. Motion of a charged particle traveling at an angle to an electric field 

g. Review - Current, Voltage, Resistance 

h. Review - Ohm�s and Kirchoff�s Laws 

i. Review - Joule�s Law  

j. Review - Electric Power 

8.  Magnetism 

a. Review - Magnetic Field 

b. Review - Magnetic field due to a current carrying wire (Ampere�s Law) 

c. Review � Force on current carrying wires perpendicular to magnetic fields 

d. Force on current carrying wires at arbitrary angles to magnetic fields 

e. Review � Force between parallel current carrying wires 

f. Force on current carrying wires at arbitrary angles to one another 

g. Review � Force on a charge moving perpendicular to a magnetic field 

h. Force on a charge with a velocity at an arbitrary angle to a magnetic field 

i. Review - Motion of a charged particle in a magnetic field (Lorenz force) 

j. Review - Electromagnetic Induction 

k. Self-Induction 

l. Addition of magnetic fields at arbitrary angles 

9.  Oscillations and Waves 

a. Simple Harmonic Motion 

b. Oscillation and Energy Transformation 

c. Resonance 
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d. Mechanical Waves (Longitudinal and Transverse) 

e. Waves Interference and Diffraction 

10.  Waves and Optics 

a. Properties of traveling waves 

b. Properties of standing waves 

c. Doppler effect 

d. Superposition (Interference) 

e. Interference and diffraction 

f. Dispersion of light and the electromagnetic spectrum 

g. Reflection and Refraction 

h. Mirrors 

i. Lenses 

11.  Atomic and Nuclear Physics 

a. Alpha particles scattering and the Rutherford model of the atom 

b. Photons and the photoelectric effect 

c. Bohr model of the atom (including energy levels) 

d. Wave-particle duality 

e. Radioactivity and half-life 

f. Nuclear reactions  

(a) Conservation of mass number 

(b) Conservation of charge 

(c) Mass-energy equivalence 
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Course Assessment 

Formative assessments are done by the teacher in order to assure that 

the students understand the material that has been taught.  They create a 

feedback loop between the students and the teacher so that misunderstandings 

can be corrected and instruction modified to optimize the learning environment.   

These formative assessments occur during class and can be divided into 

two categories.  The first category is ungraded and consists of student 

participation, student responses to questions, observed student-student 

interactions and homework completion.   

The second type of formative assessment is graded and consists of 

quizzes, based on previously discussed homework assignments; quests, which 

are full period assessments that check a broader set of problems at the same 

level of difficulty as quizzes; and reading quizzes, which check to see if students 

have been completing reading assignments. Altogether these assessments 

represent about 20 - 30 % of the marking period grade. 

Summative assessments take the form of chapter tests, midterms and 

finals.  These are all given in the same form as the AP exam; half multiple choice 

and half free response.  The multiple choice questions are conceptual in nature 

while the free response section involves solving multi-step problems; often taken 

from prior AP exams.  Chapter tests comprise about 50 - 60% of each marking 

period grade. The midterm and final exam each represent 10% of the full year 

grade; combined they equal a marking period grade.  
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The intention is for identical summative assessments to be given to all the 

students in the course on the same day, regardless of their teacher.  This is to 

encourage students to study together in groups, with or without a teacher, to 

advance their skill and understanding.  

Laboratory work is graded and typically represents about 20% of each 

marking period grade.  The grade is divided evenly between the work done in the 

lab, based on teacher observation, and the lab report. 

Methodology 

Lecture 

Use of this method will be limited to the introduction of new topics and will 

be of short duration, no more than 10 minutes in one class period. Concepts will 

generally be developed through class discussion with the teacher serving the role 

of moderator and recorder rather than lecturer.  Many classes will not include this 

component at all.  The students will need to use their visual, listening, writing 

skills and organization skills to benefit from this part of the course. Students will 

be required to keep complete and organized notebooks 

Large group Problem Solving and Discussion Sessions 

The teacher will lead these sessions where students will actively 

participate in raising questions, answering questions and expanding upon topics.  

The entire class will work together to solve complex problems which test their 

understanding of the ideas being developed.  The teacher will coordinate these 

sessions to ensure that all the students participate.  This is vital in that this gives 

each student the opportunity to expand their understanding.  By increasing the 
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Zone of Proximal Development (ZPD) for all the students, they will be able to 

quickly advance their understanding. 

Small Group Problem Solving Sessions 

In these sessions a few problems will be given to the entire class and they 

will work in groups of 2 to 4 students to solve them.  Once most of the problems 

have been solved, each group will present a solution to one of the problems to 

the rest of the class.  Disputes and different approaches will be discussed in the 

Large Group format with the class taking the lead in determining the best 

approach.  The teacher serves to chair the discussion.  Once again this activity is 

designed to allow the students to quickly learn in an environment where their 

ZPD has been expanded. 

Hands-On Activities / Laboratory / Discovery 

Students need to not only solve problems analytically but also apply those 

solutions to real hands-on problems.  These sessions are generally, but not 

exclusively, held in the physics laboratory and involve two to four students 

working together.  The students will be asked to conduct experiments that either 

apply or develop new understandings.  These will not be cookbook experiments, 

where the students simply walk through a procedure.  Rather, these experiments 

involve gathering data and making analyses where the results are unknown to 

them, and sometimes even to the instructor.  

These labs will use actual physical apparatus, often with electronic probes 

to gather data and computers to conduct analysis.  Whenever possible, they will 

be performed towards the beginning of each unit, affording the student the 
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experience of discovering the concepts before they are formally taught by the 

instructor. One objective of each lab exercise is for each student to analyze their 

data using data and error analysis techniques in order to judge the accuracy and 

meaning of their results. 

Reading 

Students will be encouraged to develop the self-confidence and 

techniques required to learn directly from the text.  The techniques needed to 

accomplish that will be discussed in class and reviewed from time to time.  

Readings will be assigned to either introduce or reinforce topics.  In this way, 

classroom time is not spent reviewing every fact and detail for which the students 

will be responsible.  Students will then be better prepared to participate and 

engage in active classroom discussion.  The skill of being able to read and 

understand a text is so critical that great effort will be made to encourage 

students to develop it.  In this vein, reading quizzes will be given from time to 

time to determine that students are completing their reading assignments. 

Homework problems 

Problems will be assigned every night so that students can apply the 

learning that was done during class that day.  This will be checked by periodic 

homework quizzes that will be given the day after the assignment was due.  In 

that way, student who made an honest effort but need to ask questions in class 

to reach a correct solution are not penalized.  The homework quizzes are 

designed to test that students are learning how to do these problems.  This 
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contrasts with collecting assignments, which can lead to copying rather than 

understanding. 

Field Trips 

Appropriate trips out of the school environment are an excellent way to 

show students that what they learn in classroom definitely relates to the word at 

large. Students are given a chance to see how ideas develop into real life 

situations and have real-life applications.  

Resources 

Physics: Principles with Applications 

Douglas C. Giancoli 

ISBN: 0136119719 

Format: Hardcover, 1096pp 

Pub. Date: August 1997 

Publisher: Prentice Hall 

Edition Description: 5TH 

This best-selling algebra-based physics book has been widely known for 

its carefully crafted exposition, strong biological applications, and high degree of 

accuracy and precision. The Fifth Edition maintains these strengths and brings a 

conceptual emphasis and real-world flavor to the examples, problems, and art 

program. In addition, the new edition features an unparalleled suite of media and 

on-line resources to enhance the physics classroom.  

Additional Textbook: Beiser, A., Physics, 5th edition, Addison Wesley 1991 

Laboratory Software: PASCO  
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